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Abstract and Keywords 

Genetic information is encoded over the four nucleotide alphabet {A, C, G, T} in the 

form of DNA helix (double-stranded structure). This structure consists of DNA 

strands with opposite orientation (called Watson and Crick strands), bonded via 

the Watson-Crick complementarity A-T, C-G. During DNA replication, each of these 

strands serves as a template for the reproduction of the complementary strand so 

as to produce two identical copies of the original DNA helix. Thus, we can say that 

the Watson and Crick strands are "equivalent" with respect to the information they 

encode. 

The Watson-Crick complementarity is mathematically modeled as an antimor-

phic involution 9. Hence, we can formalize the above-mentioned equivalence by 

the equivalence between a word and its image under 9. This generalization enables 

us to extend the notions of periodicity and power (repetition) to those of pseudo-

periodicity and pseudo-power. We call any word in u{u, 9{u)}* a pseudo-power of 

u. 

With the notion of pseudo-power, we extend two problems of significance which 

involve power of words, that is, the Fine and Wilf's theorem and the Lyndon-

Schiitzenberger equation. The first theorem answers the question of how long prefix 

a pseudo-power of u and that of v should share to imply that u and v are pseudo-

powers of some common word. Onto the length of this prefix, we provide an upper 
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bound 2max(|u|, \v\) + min(|u|, \v\) — gcd(\u\, \v\), and later improve it slightly. We 

also investigate its lower bound by constructing words u, v which cannot be written 

as pseudo-powers of a common word, but some of whose pseudo-powers can share a 

prefix of length quite close to the upper bound. 

The extended Lyndon-Schutzenberger equation is of the form 

a(u,6{u)) = P(v,6{v))y{w,0{w)), 

where a(u,9(u)) G {u,9{u)}e, P(v,6(v)) G {v,9(v)}n, and j(w,9(w)) G {w,9(w)}m 

for some £, n, m > 1. We ask the question of under what conditions on £, n, m, this 

equation implies that u,v,w G {t,9(t)}+ for some word t. The strongest condition 

we obtained so far is I > 4, m, n > 3. 

Keywords: Watson-Crick complementarity, antimorphic involution, Fine and Wilf 's 
theorem, Lyndon-Schutzenberger equation 
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"Simplicity is the final achievement. 

After one has played a vast quantity of notes and more notes, it is simplicity that 

emerges as the crowning reward of art." 

- Frederic Chopin 

v 
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Preface 

The idea of extending the notion of identity, being inspired by DNA double helix, 

has been originally proposed by Dr. Elena Czeizler during her stay as a postdoctoral 

fellow at our research group 3 years ago. At a research meeting in November 2007, 

she described her premiere results on the extended Fine and Wilf's theorem; it 

is a quite challenging task to express how deeply the author was impressed then. 

She illustrated how gracefully an inspiration taken from biology fuses with a well-

established theory in mathematics. It was a glimpse of true enlightenment. 

We quickly adopted this extended identity and a resulting extended notion of 

power (repetition). Our subsequent prolificacy bears eloquent testimony to how 

mathematically beautiful and well-defined the notion is. In fact, it was not long be­

fore we succeeded in extending another significant theory on Lyndon-Schiitzenberger 

equation. Even after she left our group, the author has kept working on this promis­

ing mine, and obtain novel results and refinements of our premiere works as well as 

invent useful tools for ease in access to this beautiful mathematical object. Since 

considerable amounts of positive results have been achieved, now the author as-
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sembles this thesis mainly based on these achievements by adding his other related 

works done during his Ph.D. program, which has been supervised by Prof. Lila Kari 

at the Department of Computer Science, the University of Western Ontario from 

September 2006 to August 2010 (scheduled). 

This thesis is composed of two main parts except the introduction and the con­

clusion: Part II presents the above-mentioned main contributions in combinatorics 

on words, that is, a biologically-inspired extension of the notion of identity of strings 

and the extended Fine and Wilf's theorem and Lyndon-Schiitzenberger equation. 

Meanwhile, Part III is an ensemble of the author's works in formal language the­

ory, which shed light rather on the dynamic information processing by modeling 

the mechanism as language operations such as duplication, parallel insertion and 

deletion. 

It is most regrettable that this thesis cannot report the achievements done 

through fruitful collaboration-ships in the year 2010 with Dr. Ehsan Chiniforooshan, 

Prof. Mark Daley, Dr. David Doty, Prof. Oscar H. Ibarra, Prof. Peter Sosik, and 

Dr. Zhi Xu. This is purely because of its submission schedule. It does not present 

any results that are required for his co-authors' proposal for Ph.D. degree, either. 

As such, this thesis is never a "complete" collection of all his works. His website 

(http://www.csd.uwo.ca/~sseki as of August 13, 2010) is kept updated; if the 

readers find his works interesting and visit this website, that is more than he can 
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dream of. 

Shinnosuke Seki 

during the season of fresh green leaves 

at London, Ontario, Canada, 2010 
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Chapter 1 

Introduction 

Last century has seen remarkable developments in molecular biology. Since the 

discovery of the double helical structure of DNA by Watson and Crick [56], several 

fundamental processes occurring in living organisms had been elucidated such as 

DNA replication, translation, transcription, and protein synthesis. The enormous 

progress in the understanding of DNA in vivo and the manipulation of DNA in vitro 

has even led to the appearance of a completely new field of research that combines 

molecular biology and computation: DNA computing [1]. 

Computation consists of two essential components: one is the method of repre­

senting information (encoding), and the other is the mechanism to manipulate the 

encoded information (processing). These are central to bio-computation, too. This 

thesis mainly focuses on the first. 

The understanding of the genetic information processing mechanism has grown 



www.manaraa.com

3 

tremendously as exemplified before, whereas the study of the problem of how to 

encode information on biomolecules is in its infancy. Mechanisms of information 

processing in general ought to be designed so as to get the most out of the intrinsic 

properties of information encoding media, as being exemplified by the fact that 

arithmetic operations are implemented favorably on bits instead of digits because a 

bi-stable environment (two voltage levels) is the optimal way of encoding information 

electronically. Therefore, better understanding of DNA as an information encoding 

medium will ultimately lead us to the better way of encoding data as biomolecules. 

Information encoding is a topic handled mainly in coding theory [27], which in 

turn relies heavily on combinatorics on words [5, 40]. Accumulated knowledge in 

these fields has proved to be useful in information encoding onto biomolecules, at 

least for DNA computing purposes. Various particularities exhibited by biological 

information encoding, however, prevent us from applying this knowledge in situ 

to biomolecular encoding. For instance, two representative encoding biomolecules, 

DNA nucleotides and proteins, consist of more than two kinds of units (not binary), 

and hence, known results on binary codes require some base conversion to be com­

patible with codes on these molecules, see, e.g., [2]. Moreover, the selective chemical 

bond between DNA molecules called Watson-Crick complementarity has to be taken 

into account. 

The primary aim of this thesis, and hence, its major contribution, is to gen­

eralize two notions of significance in combinatorics on words, namely, power and 
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primitivity of word, so as to reflect the particularities of DNA encoded information, 

specifically the Watson-Crick complementarity. These generalizations further enable 

us to extend two landmark results in this field, the Fine and Wilf's theorem [16] 

and Lyndon-Schutzenberger equation [41] (Chapters 3-6). Although results reported 

here are credited with no more than the purely mathematical value of being gen­

eralizations of significant classical notions and theorems, continuation of research 

in this direction has also the potential to enrich our understanding of biomolecular 

information and computation. 

Our secondary aim is to model three bio-operations mathematically, and analyze 

these models. These operations are pseudoknot formation (studied in Chapter 7), 

duplication (Chapter 8), and parallel insertion/deletion (Chapter 9). 

1.1 Preliminaries 

1.1.1 Preliminaries in molecular biology 

This subsection contains a brief description of basic molecular biology notions of 

DNA structure. Keywords include nucleotide, DNA molecule in single and double 

strand forms, Watson-Crick complementarity, and DNA replication. An abundance 

of literatures exists on these topics, e.g., [3, 11, 21, 38, 55]. 

A DNA (deoxyribonucleic acid) molecule is a linear chain (DNA single strand) 

of nucleotides bonded by strong covalent bonds. A nucleotide consists of a sugar-
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phosphate unit and one of the bases (Adenine, Cytosine, Guanine, and Thymine). 

Since nucleotides are distinguished from each other only by their bases, the nu­

cleotides can be symbolized by A, C, G, T. 

A DNA molecule has an orientation, from the 5'-end to the 3'-end, arising from 

some chemical properties of nucleotides. By convention, a DNA molecule is written 

in the 5' to 3' orientation, that is, AGGTCT stands for 5'-AGGTCT-3'. 

DNA single strands may interact with each other as follows. A can bind to T via 

two hydrogen bonds, while C can bind to G via three hydrogen bonds. Given two 

single-stranded DNA molecules wi, W2, if w\ can be obtained from W2 by reversing W2 

and replacing each nucleotide with its complement nucleotide in the above-mentioned 

sense (A —> T, C —> G, and vice versa), then w\ and u>2 are said to be Watson-Crick 

(WK-) complementary to each other. Two complementary DNA single strands (one 

of which is called the Watson strand and the other is called the Crick strand; there 

is no biological difference between Watson strand and Crick strand) with opposite 

orientation can bind to each other and form a stable DNA double strand resembling 

a helical ladder (also-called DNA double helix). For example, AGGTCT and AGACCT 

are WK-complementary to each other, and can bind to each other by forming bonds 

between their individual bases as 

5'-AGGTCT-3' 

3'-TCCAGA-5' 



www.manaraa.com

6 

It is not always the case that once two WK-complementary single strands are 

poured into a test tube, they certainly bind to each other and form a double helix. 

This tends to happen at low temperatures, while at high temperatures, this is quite 

unlikely. The temperature at which the probability for two WK-complementary 

DNA single strands to form the double helix is 50% is called their melting temper­

ature. The reason why it gets harder to keep the double helix at high temperatures 

is that the higher the temperature gets, the larger the amount of energy available to 

break the weak hydrogen bonds between bases becomes. More generally, the notion 

of Gibbs free energy can be defined for any given DNA structure informally1 as the 

amount of energy required to break all hydrogen bonds in the structure. 

The process of DNA (semi-conservative) replication begins with the unwinding of 

Watson and Crick strands of a DNA double strand. To the unwound two DNA single 

strands, short DNA single strands called DNA primers stick, and form partially 

double-stranded DNA molecules. Extending the 3'-end of primers result in two 

identical copies of the original double strand. This extension is accomplished by 

an enzyme called DNA polymerase, which adds free nucleotides to the 3'-end of 

newly-formed strands. 

xThe formal definition of Gibbs free energy is as: 

G(p,T) = U+pV-TS, 

where U is the internal energy, p is pressure, V is volume, T is the temperature, and S is the entropy. 
Although this formal definition will not be required in the rest of this thesis, the interested readers 
are referred to, e.g., [47]. 
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1.1.2 Preliminaries in formal language theory 

Next we provide the reader with basic concepts and notation in combinatorics on 

words and formal language theory. References [22, 24, 40, 49, 57] contain further 

details. 

An alphabet is a set of letters, denoted by E. For example, the English language 

alphabet is {a, b,c,... ,y,z} of size 26, the protein alphabet consists of 

{A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V} 

(size 20), and the alphabet of DNA molecules is {A, C, G, T} of size 4. A (finite) word 

over E is a sequence of letters in E, and the set of all such words is denoted by E*. 

The catenation of two words u, v E E* is denoted by u • v or simply by uv. The 

length of a word w G E* is the number of letters occurring in w and is denoted by 

|iu|. For instance, |AGGTCT| = 6. The empty word is the word of length 0, denoted 

by A (or e), and we denote E+ = E* \ {A}, the set of non-empty words. A word 

M e S* is called an infix or a factor of a word w € E* if w = xuy for some x, y G E*; 

if either x or y is not empty, then the infix is said to be proper. An integer p > 1 

is called a period of a word w if p < \w\ and any of two letters of the word which 

are separated by p — 1 letters are the same. For example, the word "abcabcab" has 

three periods 3, 6, and 8. 

A subset of E* is called a language. A language is said to be regular (context-free) 
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if it is accepted by a finite automaton (resp. pushdown automaton). For details of 

language acceptors including these two automata, and the hierarchy they form, see 

[24]. 

For a language L C E*, L* — {wiw2---wn \ n > 0,wi,... ,wn G L}. For a 

singleton language {w}, we use the notation w* instead of {w}*. A word in w* is 

called a power of w. In particular, w2(— ww) and w3(= www) are called the square 

and cube of w, respectively. A non-empty word which is not a power of another 

(strictly shorter) word is said to be primitive. For a non-empty word w G E+ , a 

primitive word u G E+ such that w G u* is called the primitive root of w, and is 

denoted by p(w). It is well-known that any non-empty word has a unique primitive 

root. Note that two words are powers of a common word if and only if their primitive 

roots are the same. 

On E*, one can define the identity function ids* to be the function with domain 

and codomain E* which satisfies ids* (w) = w for all w G E*. A mapping 9 : E* —> E* 

is called an antimorphic involution if both the following conditions are satisfied: 

1. for any « ,«£ E*, 8(uv) = 9(v)9(u) (antimorphism); 

2. the composition of 9 with itself becomes the identity, i.e., 9 o 9 — id^* (invo­

lution) . 

The antimorphic involution is known to be a proper model of WK-complementarity; 

the antimorphic and involutive properties correspond to reversing and the comple-
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mentary relations A-T, C-G, respectively. 

We can abstract a DNA single strand as a word over the nucleotide alphabet 

{A, C, G, T}, and define an antimorphic involution r over this alphabet as r(A) = T, 

T(T) = A, r(C) = G, and r(G) = C. Then r formalizes the Watson-Crick comple­

mentarity. In fact, r maps a Watson strand into the corresponding Crick strand as 

being illustrated by r(AGGTCT) = r(T)r(AGGTC) = • • • = r(T)r(C)r(T)r(G)r(G)r(A) = 

AGACCT. Therefore, r is called the DNA involution [29]. 

Now let us conclude this preliminaries with the introduction of two well-known 

results whose extensions by taking antimorphic involutions into account will be the 

main subjects of the research reported in this thesis: one is the Fine and Wilf's 

theorem and the other is the Lyndon-Schutzenberger equation. 

In [16], Fine and Wilf proved that if a word has two periods p, q and is of length 

at least f(p, q) = p + q — gcd(p, q), then gcd(p, q) is also a period of the word, where 

gcd(p, q) denotes the greatest common divisor of p and q. Using the notion of power, 

this theorem can be restated as follows. 

Theorem 1.1. For given two words u,v, if a common prefix between a power of u 

and a power of v is of length f(\u\, \v\), then u and v are powers of the same word, 

that is, they share a primitive root. 

For any two integers p, q, a proof of Theorem 1.1 found in [5] gives a construction 

of two words u, v of respective lengths p, q with p{u) ^ p(v) such that a power of u 
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and a power of v can share a common prefix of length f(p,q) — 1. According to the 

terminology used by Constantinescu and Ilie in [6], the bound / given in Theorem 1.2 

is said to be strongly optimal for the Fine and Wilf 's theorem (the formal definition 

of strong optimality will be introduced in the context of our extension of Fine and 

Wilf's theorem in Section 1.2). 

The Lyndon-Schiitzenberger's equation is the generic term of the equation of the 

form: 

ul = vnwm, (1.1) 

where u,v,w E S + and £,n,m > 1. Lyndon and Schiitzenberger proposed and 

investigated equations of this form [41]. A question arises of under what conditions 

on £, n, m, this equation implies that u, v, w are powers of the same word. They 

answered this question as: if all of £, n, m are at least 2, then Eq. (1.1) implies that 

u,v,w E t+ for some word t E S + . 

1.2 Watson-Crick complementarity and combina­

torics on words 

The main goal of this thesis is to study the implications of taking into account 

properties of DNA encoded information, and in particular, WK-complementarity, 

on notions and results in combinatorics on words and formal language theory. In 
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particular, one of the main topics of our research has been to extend the Fine 

and Wilf's theorem and Lyndon-Schiitzenberger equation. Here we firstly provide 

formal definitions of the problems which we will address. Since these are two of the 

most important results in combinatorics on words, they have been the subject of a 

considerable number of studies since their proposal in 1960s. For details, see the 

introductions of Chapters 3-6. 

A common notion in the Fine and Wilf's theorem and Lyndon-Schiitzenberger 

equation is the notion of power. The deeper-lying concept is, however, the identity 

because the power can be interpreted as a repetition of identical copies of a word. 

In Section 1.1.1, we explained the mechanism of DNA replication through which 

a DNA double strand generates two copies of its own by using its Watson and Crick 

strands as templates. This means that the Watson and Crick strands contain the 

same information for theoretical but also for practical purposes. To put it another 

way, they are informationally equivalent. We generalize this information equivalence, 

for an arbitrary alphabet and given antimorphic involution 9, by regarding a word 

w and its complement 9(w) equivalent. 

Taking this equivalence into account, we can naturally extend the definition of 

power as a repetition of multiple words which are equivalent to each other according 

to a predefined equivalence relation between words. If we define the relation as "u is 

equivalent to v if u = v," then this new definition is identical to the original. In this 

thesis, we employ the equivalence defined as "for a given antimorphic involution 9, 
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u is equivalent to v if either u = v or u = 0(v)." With this equivalence in mind, it 

makes sense to call elements of the set w{w, 0(w)}* Q-powers ofw. For instance, for 

the DNA involution r and a DNA molecule AC, both ACAC and ACGTGT are r-powers 

of AC because they are in AC{AC, r(AC)}*. We call the elements of {uu, u9(u)} as 

9-squares of u. 

As the notion of primitivity is based on the notion of power, we can define the 

concept of ^-primitivity based on the notion of 0-power. We say that a non-empty 

word w G S + is 9-primitive if w € t{t, 9(t)}* implies w = t. For a non-empty word 

« 6 E + , its 9-primitive root is defined to be a ^-primitive word t G E+ such that 

u € t{t, 9(t)}*. One of the main results of this thesis asserts the uniqueness of 9-

primitive root for any given antimorphic involution 9 (Corollary 3.15 in Chapter 3). 

Therefore, we can say that two words are 0-powers of a common word if and only if 

they share their ^-primitive roots. Furthermore, we can denote the unique primitive 

root of a word w by pe(w). 

The definitions of 0-power and ^-primitive root are followed by a question which 

is analogous to the one asked in the context of Fine and Wilf's theorem as follows: 

For u, v e S + , when a 0-power of u and a 0-power of v share a common prefix of 

some length, how long should this common prefix be to force u and v to share their 

^-primitive root? More formally, this problem is formalized as follows: 

Problem 1.1. Find a function / : N2 —>• N such that for an antimorphic involution 

9 and two words u, v, if a 0-power of u and a 0-power of v share a common prefix of 
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length f(\u\, \v\), then p6{u) = pe{v). 

The theorem which we will call extended Fine and Wilf's theorem is rather a 

collection of results which prove that some specific function is an answer to Prob­

lem 1.1. Such a function is called a bound for the extended Fine and Wilf's theorem, 

or simply, a bound. 

Using terminologies introduced by Constantinescu and Hie in [6], we define a 

few criteria of optimality for this bound. A function / is called a good bound for 

P if it is an answer to Problem 1.1. A function / which is good for (p,q) for any 

integers p, q is called a good bound. With the original result proved by Fine and Wilf 

in mind, one can imagine that if / returns a big integer relative to \u\ and \v\, i.e., 

/(|it|, \v\) 3> \u\, \v\, then it is likely for / to be a good bound. A more challenging 

problem is, therefore, to make the value of / as low as possible, or in other words, 

to find the optimal bound. 

For given integers p, q, a function / is said to be optimal for (p, q) if this function 

is good for (p,q), while the function / ' , which is defined as f'(n,m) — f(n,m) — 1 

for any integers n, m, is not. A function / is said to be weakly optimal if there exist 

integers p, q such that / is optimal for (p, q). On the contrary, a function / is said 

to be strongly optimal if / is optimal for any integers (p, q). Then the corresponding 

two problems arise. 

Problem 1.2. Provide a weakly optimal bound for the extended Fine and Wilf's 
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theorem. 

Problem 1.3. Provide a strongly optimal bound for the extended Fine and Wilf's 

theorem. 

Trivially Problem 1.3 is more difficult than Problem 1.2. In fact, Problem 1.3 will 

remain unsettled even in this thesis. Hence, we will examine the following problem 

instead. 

Problem 1.4. Given a bound, characterize all pairs of integers for which the bound 

is optimal. 

The notions of 0-power and ^-primitive root also enable us to generalize the 

Lyndon-Schiitzenberger equation as follows: for u,v,w €E S + and positive integers 

£,n,m > 1, 

UiU2 •'•Ut = ViV-2 • • • V„WiW2 • • • wm, (1.2) 

where U\,...,ut £ {u, 0(u)}, Vi,...,vn G {v,9(v)}, and wi,...,wm € {w,9(w)}. 

Then we examine the following problem. 

Problem 1.5. Given Eq. (1.2), find conditions on £, n, m under which this equation 

implies the existence of a word t € E+ satisfying u,v,w € {t, 0(t)}*. 
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1.3 Contributions 

1.3.1 Main contributions 

The two main theorems in this thesis are the following. For the first theorem, let us 

define for integers p, q with p > q the functions: 

b(p,q) = 2max(p,q) + mm(p,q)-gcd(p,q), (1.3) 

I b(p,q) iiq = gcd(p,q), 

(1.4) 

b(p,q) — [gcd(p,q)/2\ otherwise. 

Theorem 1.2 (extended Fine and Wilf's theorem [8, 34]). Let u, v G S + . / / a 

9-power of u and a 6-power of v share the common prefix of length b'(\u\, \v\), then 

u, v G t{t, 6(t)}* for some word t G S + . 

Theorem 1.3 (on the extended Lyndon-Schutzenberger equation [7, 33]). An equa­

tion of the form (1.2) implies u,v,w € {t, 0(t)}+ for some word t € E + if £> 4 and 

n,m > 3. 

On the other hand, if one of £,n,m is at most 2, then there exist u,v,w G E + 

and an antimorphic involution 9 which satisfy the following two conditions: 

1. there does not exist any word t £ S + such that u,v,w € {£, 9(t)}+; 

2. there exist u\,... ,ug e {u,9(u)}, vi,...,vn € {v,9(v)}, and wi,... ,wm G 

{w, 9(w)} for which Eq. (1.2) holds. 
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These theorems will be proved in the four chapters of Part II. Chapters 3 and 

5 prove Theorem 1.2, while Chapters 4 and 6 investigate the extended Lyndon-

Schiitzenberger equation and prove Theorem 1.3. 

Among them, the most significant chapter is Chapter 3. This is because it 

introduces the notions of 0-power and 0-primitivity of words and investigates their 

various algebraic properties, which turn out to be crucial for the further investigation 

in the other three chapters. These essential properties include: 

1. the ^-primitive root of a word is unique (Corollary 3.15); 

2. circular permutation does not preserve the property of 0-primitivity2 (Propo­

sition 3.12); 

3. a ^-primitive word u can be a proper infix of a 0-square of u or of 9{u). 

Property 2 contrasts with the closure property of the set of primitive words under 

circular permutation. Property 3 can be rephrased as: there may exist an antimor-

phic involution 9 and a ^-primitive word u and words Ui, 112,113 G {u, 9(u)} such 

that xuiy = U2U3 holds with some non-empty words x,y € S+ . For instance, for 

a r-primitive word u = CGATAT, u2 = CG • ATATCG • ATAT = CG • T(U) • ATAT. By 

contrast, a primitive word can never be a proper infix of its square. It is these two 

properties of primitive words that make it possible to prove the classical Fine and 

2Circular permutation is a composition of arbitrary number of circular shift. For example, from 
ATGC, we can obtain TGCA, GCAT, and CATG as well as itself by circular permutation. 
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Wilf's theorem and many of its variants using elegant methods based on number 

theory (e.g., see [5] and the references cited in Chapters 3 and 5). Due to the above-

mentioned contrasts, we can no longer expect the pure number-theoretic argument 

to prove the extended Fine and Wilf's theorem, and hence, some groundwork facts 

on combinatorics on ^-primitive words had to be established, with Theorems 1.2 

and 1.3 being the ultimate goals. 

In Chapter 5, we prove that b' given in Eq. (1.4) works as a weakly-optimal 

but not strongly-optimal bound for the extended Fine and Wilf's theorem. Unlike 

the proof for the goodness of b (given in Eq. (1.3)), the proof for goodness of b' 

(Theorem 5.22) constructs all words u, v and common prefixes between 0-powers of 

u, v and observes that such common prefixes are strictly shorter than b'(\u\, \v\) if 

pg(u) ^ pe(v). In this way, we answer Problem 1.4 for the bound V (Corollary 5.23). 

One of the most intensively-studied topics appearing throughout Part II is lan­

guage equations on ^-primitive words (the extended Lyndon-Schiitzenberger equa­

tion is included). Solving the extended Lyndon-Schiitzenberger equation amounts 

to solving a set of more tractable language equations. Language equations of our 

interest on the ^-primitive word include the following: For a ^-primitive word u, 
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Ui,u2, « 3 , . . . , € {u,9(u)}, and non-empty words x,y ET,+ with \x\ — \y\, 

uix = yu2 (1.5) 

UIM2£ = yu3u4 (1.6) 

uxu2 • • • unx = yun+i • • • u2n for n > 3 (1.7) 

uiu2 = xu3y (1.8) 

uiu2u3 = xUiUf,y (1.9) 

uiu2---um = xu m + i • • • u2 m_iy for m > 4. (1-10) 

Among these, we characterize the equations of the first three forms completely 

in this thesis (Table 4.1 in Chapter 4). On the contrary, the fourth one can hold 

with non-empty x and y, as exemplified when we explained Property 3. Using the 

example, one can easily observe that the equations of both the fifth and the last 

forms can hold. Nevertheless, we prove a theorem (Theorem 6.12 in Chapter 6), 

which states that if u^ ^ U5, then equations of the fifth form cannot hold as long as 

both x and y are assumed not to be empty. As a corollary, if the equation of the 

last form holds with x, y being non-empty, then um+\ — um+2 — • • • = u2rn-\ must 

hold. We view these results as equally significant to Theorems 1.2 and 1.3. 
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Figure 1.1: A hairpin which the word X^T{X) may form, where r is the DNA invo­
lution. 

1.3.2 Other contributions 

Having abstracted the topics of primary contributions of this thesis on biological 

information encoding, the "static aspect" of biological computation, now let us 

briefly introduce the topics of our secondary contributions, which are on biological 

information processing, the "dynamic" aspect of biological computation3. 

Many of results in combinatorics on words have been proved useful to design 

sets of DNA codewords on which some bio-operations are favored, and the others 

are either not favored or inhibited. Better understanding of bio-operations and 

their properties would complement and expand the applicability of these results 

further. Among the most important are the computational power of bio-operations, 

closure properties of language classes under these operations, and language equations 

involving bio-operations. 

Let us consider the problem of designing a codeword set whose elements cannot 

3 The usage of terminologies "static" and "dynamic" in this context is due to Luca Cardelli [4]. 

0" 
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form any hairpins (see Figure 1.1). Hairpin formation of DNA single strands turned 

out to obstruct computational process of Adleman's first experiment of DNA com­

puting [1] (for details of DNA computing, see Chapter 2), and this fact has driven 

forward the research on the hairpin-freeness design problem [26, 30, 35, 36, 45]. This 

problem is in more general context formulated as negative design problem [45, 50] 

(how to design strands that avoid certain bonds), and this problem has been inten­

sively investigated on various inter- and intra-molecular interactions [2, 12, 13, 17, 

19, 20, 23, 32, 39, 43]. Structure formation is one of the most basic bio-operations. 

By forming a structure, some part of a DNA molecule is exposed and becomes 

"accessible" for other molecules, whereas the other parts are "hidden". As such, 

it becomes possible to proceed with only intended chains of reactions to achieve 

various computational purposes. Reflecting the biological significance of hairpins, 

a large body of literature is available on hairpin-related operations such as hairpin 

completion and reduction [42], hairpin inversion [9, 14], control of hairpin opening 

for DNA memory access [28, 52, 53, 54]. 

In Chapter 7, we investigate pseudoknots (see Figure 1.2). Pseudoknot formation 

enables transfer-messenger RNA molecules (tmRNA) to change their conformation, 

and as such, act both as transfer RNA and as messenger RNA [15]. The pseudo-

knot illustrated in Figure 1.2 (Right) is of the simplest and hence prevailing form 

called H-type, An H-type pseudoknot is formalized as a word Vixv2yvzT{x)v4r{y)v^. 

This formalization clarifies the crossing-dependency, which characterizes pseudo-
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Figure 1.2: Left: A pseudoknot found in E. Coli transfer-messenger-RNA. (From 
Rfam [18]). Right: A depiction of a string modelling the pseudoknot in Left, as a 
word ViXV2yv3T(x)viT(y)v5 for the DNA involution r . Here, V\ — UGC, x — CGAGG, 
v2 = G, y = GCGGUU, v3 = GG, v4 = UAAAAA, and v5 = AAAAAA. 

knots. Due to the crossing-dependency, modeling pseudoknots requires strong com­

putational power, equivalent to the context-sensitive language on the Chomsky hi­

erarchy [24]; in contrast, hairpin can be modeled by a context-free language. As a 

result, fewer studies have been done on pseudoknots compared to on hairpins (see, 

e.g., [10, 25, 37, 44, 48, 51]). In Chapter 7, we first formalize H-type pseudoknots 

as 0-pseudoknot-bordered words. A word w is said to be #-pseudoknot-bordered 

if w = xya — f30(x)9(y) holds for some x, y, a, (3 € S* with xy ^ A. This is a 

proper generalization of involutive borderedness of words proposed by Kari and Ma-

halingam [31]. Then we focus on some of the properties of pseudoknot-bordered 

words such as crossing-dependency structures on words. 

In Chapters 8 and 9, we focus rather on other operations, often referred to as 

"errors". Two kinds of typical errors "duplication," and "insertion/deletion," are 
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addressed. During DNA replication, DNA polymerase reads a template DNA single 

strand, and synthesizes the complementary strand of the template. However, DNA 

polymerase might skip and fall back, reattaching to a position that has been copied 

already. This type of error leads to a repetition of DNA segments during copying, 

and is called duplication. Gene duplication sometimes has life-threatening effects on 

organisms [46]. 

As a formal language operation, duplication is defined as the following unary 

operation: 

v? = {xyyz | u — xyz for some i , z e E ' and y € S + } . 

Its dual operation, termed repeat-deletion • , is denned as: 

u* = {xyz | u = xyyz for some x, z E S* and y G S+}-

We can further endow duplication with a control set C such that y, the duplicated 

infix, must be in C, and define the controlled duplication. The introduction of control 

set is motivated by the fact that the class of regular languages4 is not closed under 

uncontrolled (C = S*) duplication (Proposition 8.1), whereas it is closed under 

repeat-deletion (Proposition 8.6). Then the following problem is examined. 

A language is said to be regular if it is accepted by some finite automaton [24]. 
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Problem 1.6. Find a condition on C such that the class of regular languages is 

closed under V(C). 

Chapter 8 centers around proposing several conditions on the control set C and 

verifying that they preserve the regularity of languages. 

Insertion and deletion as well as substitution are the basic processes that induce 

genetic mutations. The observation that insertion (deletion) highly probably occurs 

at multiple points on a DNA molecule independently of each other and at the same 

time, makes it natural to consider parallel versions of these operations as parallel 

insertion and deletion. We may further endow the parallel insertion and deletion 

with context-sensitivity, so that the place where insertion (deletion) can occur is 

specified by the surrounding contexts. In Chapter 9, we propose a general framework 

of contextual parallel insertion and deletion called p-schema-based insertion and 

deletion, or more simply p-schema insertion and deletion. A p-schema is a set of 

tuples of words in E*. Given a p-schema F, we define the parallel insertion based 

on F, denoted by <—<F? as: for a word u G E* and a language L C E*, 

u <—'F L = [J UiLu2L • • -un-iLun. 
n>l,U=Ul ,"Un , 

(ui , . . . ,«n)eF 

In a similar manner, for a given p-schema G, we define the parallel deletion based 
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on G, denoted by ;—>G, as: for a word w EY,* and a language I C E ' , 

w ^ G L = {ui- ••«„ | n > l ,xi, . . . ,a;n_i € L, 

(Ml, . . . , « n ) G G, W = UiXiU2X2 • • • Un-iXn-iUn}, 

We also consider language equations of the forms X <-^p L2 = L3, Li *^x L2 — 

L3, Li <-^p X = L3, and their deletion variants, where Li, L2, L3, F are given and 

X is an unknown variable. Two-variables equations like X <-^F Y = L3 are also 

of interest. We strictly distinguish the equations which are solvable from the ones 

the existence of whose solution is undecidable. For solvable equations, we propose 

algorithms to solve them. 

1.3.3 Remarks about contributions 

The primary way in which molecular biology advances the developments of computer 

science has been to model molecular mechanisms occurring in living organisms as 

computational operations or computational paradigms, and then examine the com­

putational power of these models. From this point of view, we can say that the most 

important contribution which this thesis makes to computer science is to elucidate 

the particularities in biological computation that enable us to meaningfully expand 

and generalize notions and results in computer science. Among the most illustrative 

is the informational equivalence induced by WK-complementarity. This equivalence 
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makes it possible to extend various notions, such as power and primitivity of words, 

in which the identity plays an important role by replacing the identity with the 

equivalence. 

1.4 Thesis organization 

This thesis is organized as follows: 

Part II contains all the main contributions of this thesis, which consists of four 

chapters. 

The first chapter (Chapter 3) introduces the 0-primitivity, the most significant 

notion in this thesis, in its Section 3.2. Then in Section 3.3, we prove some basic 

properties of ^-primitive words. The problem setting of the extended Fine and 

Wilf's theorem is formalized there, and crude bounds are proposed. Sections 3.4 

and 3.5 discuss language equations which involve two words u, v and an antimorphic 

involution 9, and address the problem of what equations force u, v to share their 

^-primitive roots. The extended Fine and Wilf's theorem in its first version, which 

is slightly weaker than Theorem 1.2, is proved in Section 3.6. 

The second chapter (Chapter 4) formalizes the Lyndon-Schiitzenberger equation. 

In Section 4.3, we give a complete characterization of the language equations of the 

forms Eq. (1.5), (1.6), and (1.7). This characterization makes it possible to solve the 

Lyndon-Schiitzenberger equation positively under the condition £ > 5 and n, m > 3 
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in Section 4.4. 

In the latter half of Part II, we strengthen the results obtained in Chapters 3 

and 4 so as to prove Theorems 1.2 and 1.3. Chapter 5 is devoted to the extended 

Fine and Wilf's theorem. In Section 5.3, the goodness of the bound b' given in 

Eq. (1.4) is verified (Theorem 5.22) and its weak and strong optimality is discussed 

(Corollary 5.23). A relation between the optimality of b' and Sturmian words is 

discussed in Section 5.4. In contrast, Chapter 6 aims at proving Theorem 1.3. We 

firstly advance our knowledge of Properties 2 and 3 by developing various useful 

lemmas in Section 6.3. Mainly based on these tools, in Section 6.4, we prove The­

orem 1.3, which is stronger than the positive result proved in Chapter 4 on the 

extended Lyndon-Schutzenberger equation, in a concise manner. 

Part III consists of three chapters. The first chapter (Chapter 7) defines the no­

tion of #-pseudoknot-bordered words as a model of H-type pseudoknots. We inves­

tigate, e.g., the question of whether concatenation, the most basic (bio-)operation, 

preserves the property of 0-pseudoknot-borderedness in Section 7.4. 

The second chapter (Chapter 8) deals with duplication and repeat-deletion. Sec­

tion 8.3 proves closure properties of language classes in Chomsky hierarchy under 

these operations. In Section 8.4, we solve language equations of the form X^ = L 

and X* — L, where L is a given language and X is unknown. Section 8.5 defines 

controlled duplication, and Section 8.6 analyzes Problem 1.6. In Section 8.7, we 

briefly discuss relationship between duplication and the primitivity of words. 
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The final chapter (Chapter 9) proposes the framework of p-schema insertion and 

deletion in Section 9.3. Closure properties of classes of languages recognized by 

counter machines under j>schema insertion/deletion are investigated in details in 

Section 9.4; those of regular languages and context-free languages follow them as 

corollaries. Section 9.5 is devoted to the research on the language equations involving 

p-schema insertion and deletion. 
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Chapter 2 

DNA computing 

As outlined so far, the contributions of this thesis are purely mathematical. Nev­

ertheless, it is the bio-molecular information encoding and processing that have 

motivated the research reported in this thesis, as emphasized throughout the previ­

ous chapter. In this chapter, we take a look back at the history of DNA computing, 

or more generally, of molecular computation. This will augment the mathematical 

contribution of this thesis with potential applications to experimental fields such as 

DNA computing or molecular biology. 

2.1 Preamble 

Among the significant scientific and technological achievements of the last century, 

those in physics and biology deserve special mention: nuclear power, quantum me-
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chanics, space exploration, and molecular biology. They necessitated massive com­

putation capability, which was well beyond the unaided human computation power. 

The compelling nature of this need gave information technology impetus to grow 

explosively. As a result, throughout the latter half of the century, information tech­

nology and the computer industry have kept expanding tremendously. 

The limits of miniaturization at atomic levels may eventually challenge this rapid 

growth. In order to overcome these limits, novel computational paradigms have been 

proposed, which make use of knowledge in physics and biology: quantum computing 

and molecular computing. (For further details of quantum computing, the reader is 

referred to [24].) It comes as something of a surprise how early basic concepts of 

the paradigm of molecular computing appeared. In 1959, Feynman introduced the 

notion of nano-machine for the first time in his talk at Caltech [15]. John von Neu­

mann, the inventor of cellular automata, regarded the mechanism of self-reproducing 

as a common feature between biological organisms and computers [56]. An idea of 

cell molecular computer was discussed by Vaintsvaig and Liberman in Biofizika in 

1973 [55]. The capability of macromolecules such as proteins to process information 

has been investigated by Conrad since 1974 [8, 9]. The biological significance of the 

information theory by Claude Shannon, the father of information theory, has been 

recently pointed out by Schneider [49]. 
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Figure 2.1: The seven-vertex instance of the Hamiltonian Path Problem solved by 
Adleman's experiment in 1994. It contains a Hamiltonian path 0—>• 1 —>• 2 —>• 3 —> 
4 ->• 5 -> 6. 

2.2 DNA computing: The first experiment 

Being supported by conspicuous developments in molecular biology such as the 

discovery of DNA double helix structure by Watson and Crick [58], Polymerase 

Chain Reaction (PCR) [43], and gel electrophoresis, all of these early attempts have 

finally come to fruition in the breakthrough experiment by Leonard Adleman in 1994, 

who first succeeded in having DNA molecules solve an instance of an NP-complete 

problem, namely the directed Hamiltonian Path Problem (HPP) in a polynomial 

time [2]. HPP asks whether a given directed graph, with its start node vs and end 

node ve being specified, has a path from vs to ve which visits all other nodes exactly 

once1. The instance of HPP (a directed graph G = (V, E)) actually solved in his 

experiment is illustrated in Figure 2.1. The algorithm mainly consists of two phases: 

XHPP is a well-known NP-complete problem; indeed it is one of the Karp's 21 NP-complete 
problems [31]. Thus, at least in theory, any NP-complete problem can be solved by DNA com­
puting in a polynomial time at the cost of exponential space needed for the computation. Lipton 
gave a general framework for solving NP-complete problems using DNA [37, 38] (for the details 
of NP-completeness, the readers can consult [4]). Abstract DNA computer models with Turing 
universality are known [1, 5, 45, 59]. 



www.manaraa.com

36 

encoding an input (the given graph G) into DNA molecules, and performing a series 

of bio-operations such as ligation, PCR, affinity purification, and gel electrophoresis 

(for details of these operations, see [28]) on these information-encoding molecules, 

i.e., having these molecules interact with each other spontaneously. 

Each of the vertices is encoded into a carefully-designed 20-mer DNA single 

strand. A directed edge v\ —> V2 is also encoded into a DNA single strand of length 

20-mer whose first half is identical to the second half of the sequence encoding the 

source vertex vi, and whose second half is identical to the first half of the sequence 

encoding the target vertex u2. For instance, the DNA sequences for the vertex 3 

and the directed edges 2—^3 and 3—^4 were encoded respectively as: 

03 = 5' - GCTATTCGAGCTTAAAGCTA - 3' 

02_>3 = 5' - GTATATCCGAGCTATTCGAG - 3' 

03_>4 = 5' - CTTAAAGCTAGGCTAGGTAC - 3' 

The edges 02->3 and 03_»4 can interact with the Watson-Crick (WK-) complement 

of O3 via the hydrogen bonds A — T and C — G as: 

edge 2->3 edge 3->4 

5' - GTATATCCGAGCTATTCGAG CTTAAAGCTAGGCTAGGTAC -3' 

3' - CGATAAGCTCGAATTTCGAT -5' 
* v ' 
complement of vertex 3 
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Multiple copies of DNA sequences encoding edges and complements of vertices float 

in a test tube and adhere to each other, which amounts to generating the space 

of all candidate solutions. Among them, with high probability, is a totally double-

stranded DNA sequence2 of length 20 x 7 — 140rner which begins with the sequence 

for vertex 0, ends with the one for vertex 6, and the sequences for the others appear 

on it exactly once, which is the encoding of the Hamiltonian path. By increasing 

the number of copies of each DAN sequence in the test tube, the probability for this 

specific sequence to form increases. Any other DNA sequences in the test tube will 

be filtered out through a series of bio-operations, and finally the existence of the 

HPP sequence (output) can be detected by gel electrophoresis. Thus, the structure 

of this first DNA computing experiment can be abstractly described as follows: 

information encoding The input is encoded into carefully-designed DNA sequences; 

generating the solution space These sequences interact with each other in vitro 

in a massive parallel manner, 

bio-operations Performing various bio-operations in an appropriate order to ex­

tract the correct solution. 

A bio-algorithm to solve a 20-variable 3-SAT3 problem by Braich et al. [6], another 

2Note that both of its ends require special treatment to make it totally double stranded. 
3SAT is an abbreviation of the satisfiability problem, the first problem proved to be NP-complete 

by Cook and Levin independently around 1971 [10, 34]. Its restricted version, 3-SAT, was also 
proved to be NP-complete by them. See also [4, 25]. 
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significant milestone in DNA computing research, basically follows this idea4. 

In particular, the massive parallelism is the key principle that enabled the DNA 

computer to generate the whole solution space of the HPP instance in only one 

time-step (as opposed to exponential blow-up at the time-complexity in the classical 

electronic implementation of the algorithm). In Adleman's experiment, he spent a 

week to complete this computation, out of which generating solution space took one 

day and the rest of the time was devoted to extracting the solution from the test 

tube. 

2.3 Information encoding in DNA computing 

Needless to say, DNA computing is not free of challenges. Two major challenges are 

the space complexity trade-off, and information-encoding sequence design. In the 

above-mentioned brute force approach, the full-solution space has to be constructed. 

Hartmanis calculated that DNA sequences required to construct the full-solution 

space for an HPP instance with 200 vertices would outweigh the Earth [22]. The 

problem of how to avoid constructing the full-solution space has been addressed by 

many researchers. Morimoto, Arita, and Suyama [42] proposed a bio-algorithm in 

which, instead of generating all candidates before its computation phase, each path 

4It is believed that as long as we rely on the brute-force algorithm, a DNA computer cannot 
solve 3-SAT with more than 70 variables [36]. The computational capacity of DNA computing 
for 3-SAT problem was theoretically strengthened so as to be able to solve 120-variables 3-SAT 
problem based on breadth-first search [60]. 
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is stepwise extended from the start vertex (the vertex 0 in Figure 2.1) by checking 

whether a newly-appended vertex has never occurred on the path every time a vertex 

is appended and the path elongates. Another noteworthy example of this approach 

is an algorithm based on ligase chain reaction (LCR) by Wang et al. [57], which 

solves an ra-variable m-clause SAT using the operations split, ligation, LCR, and 

merge m, n, m, and m times, respectively. 

The other challenge lies in designing optimal information-encoding sequences. 

As exemplified previously in DNA computing for HPP, sequences encoding vertices 

and edges are supposed to bind to each other so as to form a double-stranded DNA 

sequence via WK-complementarity A-T and C-G. However, it is most likely that a 

sequence of 20mers contains all of the four kinds of nucleotides; in addition, a DNA 

sequence is bendable. As a result, a single-strand DNA sequence may fold into itself 

like hairpin if it contains two complementary subsequences, and would prevent it 

from interacting with other sequences. Such intramolecular structures (also called 

secondary structures) as well as intermolecular structures (structure formed by mul­

tiple sequences hybridizing among themselves) are actually preferred in general to 

their single-stranded form in terms of (Gibbs) free energy5 [41]. The lower the free 

energy is, the more stable the structure gets. Hence, single-stranded sequence(s) 

tends to form an intra- or inter-molecular structure which achieves the minimum 

5Informally speaking, the free energy of a structure of a DNA sequence is the sum of the energies 
required to melt all of its bonds. 
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free energy. This tendency is often made use of in order to predict an intramolecular 

structure of a given single-stranded DNA/RNA sequence [61, 62]. 

As a matter of course, the formation of inter- or intra-molecular structures can 

be useful in the molecular computation. The hairpin is the most typical intramolec­

ular structure, and hence, employed to implement: read-only and rewritable DNA 

molecular memories [27, 52, 53, 54], logic circuits [7, 21, 44]. Whiplash PCR [20, 48], 

etc.. Therefore, the problem which would be more practical once being solved is not 

to prevent sequences from forming any intra- or inter-molecular structure (negative 

design), but to design sequences which form only desirable intra- or inter-molecular 

structures (positive design: these terminologies are from [40, 47]). The positive de­

sign problem is generally highly-related to a specific experiment and in the most 

general setting this problem is known to be equivalent to the independent set prob­

lem [16], and hence, NP-hard. 

On the other hand, we can provide a general framework for the negative design 

problem by constructing a set of DNA sequences (encoding set) which do not allow 

for any undesired intra- or inter-molecular structures. Sager and Stefanovic in [47] 

proposed three conditions which such an encoding set must satisfy: 

1. no sequence in the library forms any undesired intra-molecular structure (like 

hairpin); 

2. no sequence in the encoding set hybridizes with a sequence in the encoding set 
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in any undesirable manner; 

3. no sequence in the encoding set hybridizes with the complement of a sequence 

in the encoding set in any undesirable manner; 

Note that these conditions are never sufficient conditions. The most significant 

constraint from the viewpoint of thermodynamics is the uniform melting temper­

ature. Whether a DNA sequence and its complement interact with each other or 

not strongly depends on the temperature; i.e., if the temperature is below the melt­

ing temperature of the sequence. In the Adleman-Lipton model of DNA comput­

ing, the computation is the series of interactions between DNA sequences via WK-

complementarity so that making the melting temperature uniform is important for 

obtaining uniform hybridization efficiency. One key to control the melting tem­

perature is the GC content. Other constraints include forbidden sub-sequences and 

repeated bases. The existence of some specific sequence of bases may throw off the 

computation. In the experiment which employs a restriction enzyme6, if its recogni­

tion site appeared on an encoding sequence, then the sequence would be cut by the 

enzyme. The repetition of bases is also known to be hazardous for DNA computing 

[50, 51]. 

Methods based on thermodynamics give us the most accurate solutions to the 

6A restriction enzyme is an enzyme which recognizes a specific sequence of a double stranded 
DNA molecule and cut the DNA molecule at that location in a specific way, leaving either blunt 
ends or staggered sticky ends. Such a specific sequence is called the recognition site of the restriction 
enzyme. 
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negative design problem, but at the cost of massive computational power [11, 12]. 

One way to reduce this computational load which has attracted the attention of 

researchers for decades is to utilize a great deal of knowledge in information the­

ory, coding theory, communication theory, combinatorics, computational complexity 

theory, automata theory, and formal language theory. The negative design problem 

has been blessed with this approach, and as a result, a big amount of research results 

have been obtained [3, 13, 14, 16, 18, 19, 23, 26, 29, 30, 32, 33, 35, 39, 40]. 

One of the most remarkable examples which illustrate how useful theories in 

computer science can be in negative design problem, and hence in DNA computing, is 

the method of designing DNA sequences based on templates by Arita and Kobayashi 

[3]. Since DNA molecules are words over the quaternary alphabet {A, C, G,T} of 

nucleotides, one can encode each nucleotide by 2bits, for example, as: A —» 10, C —> 

00, G —> 01, and T —>• 11. As such, two binary sequences, called the template and map, 

can encode a DNA single strand in such a manner that the template 1100 and the 

map 0101 encode ATCG. As a map, Arita and Kobayashi employ an error-correcting 

code so that the resulting set of sequences achieves a Hamming distance which is 

larger than a threshold. A challenging problem arises here of the size of search space 

of all sets of templates of length n (super-exponential 22"). In general, sequence 

design problem cannot avoid enormous size of the search space, which requires a 

massive computational power. Computer simulation is one promising approach to 

this challenge. For example, Garzon, Blain, and Neel proposed a simulation tool 
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(virtual test tube) called EdnaCo in [17]. EdnaCo provides us with the reliable 

prediction of designed coding molecules' behaviours in a test tube. Encoding sets 

will prove essential to implement various complex biomolecular mechanisms such as 

DNA self-assembly system [7, 46, 59]. 

As mentioned already, our contributions in this thesis have been purely theoreti­

cal. Nevertheless, we can observe their potential to be applied to practical problems 

in molecular biology such as encoding set design problem. Recall Conditions 2 and 

3 among the above-mentioned three conditions which an encoding set must satisfy. 

As they suggest, it is usually the case that once a condition is taken into account 

as a criterion an encoding set must satisfy, one should also consider its complement 

variant. It would be convenient if one can deal with these two "complementary" 

conditions uniformly as: 

• no sequence in the encoding set hybridizes with either a sequence in the en­

coding set or its complement in any undesirable manner. 

Handling of this unified condition cannot help but involve cases analyses. Our results 

on the extensions of Fine and Wilf's theorem and Lyndon-Schutzenberger equation 

and on the language equations as well as their proofs would highly probably alleviate 

the burden of such case studies. 
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Chapter 3 

An extension of Fine and Wil f s 
theorem 

What follows is the contents of "On a special class of primitive words"1 by Elena 

Czeizler, Lila Kari, and Shinnosuke Seki, which was published in Theoretical Com­

puter Science as: 

E. Czeizler, L. Kari, and S. Seki. 

On a special class of primitive words. 

Theoretical Computer Science, 411(3):617-630, 2010. 

The conference version of this paper was presented at Mathematical Foundations 

of Computer Science (MFCS 2008): 

E. Czeizler, L. Kari, and S. Seki. 

A version of this chapter has been published. 
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On a special class of primitive words. 

In MFCS 2008, volume 5162 of Lecture Notes in Computer Science, pages 265-277. 

Springer, 2008. 

Summary: When representing DNA molecules as words, it is necessary to take 

into account the fact that a word u encodes basically the same information as its 

Watson-Crick complement 9(u), where 0 denotes the Watson-Crick complementar­

ity function. Thus, an expression which involves only a word u and its complement 

can be still considered as a repeating sequence. In this context, we define and in­

vestigate the properties of a special class of primitive words, called pseudo-primitive 

words relative to 9 or simply ^-primitive words, which cannot be expressed as such 

repeating sequences. For instance, we prove the existence of a unique ^-primitive 

root of a given word, and we give some constraints forcing two distinct words to 

share their ^-primitive root. Also, we present an extension of the well-known Fine 

and Wilf theorem, for which we give an optimal bound. 
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On a special class of primitive words 

Elena Czeizler1, Lila Kari2, and Shinnosuke Seki2 

1 Department of IT, Abo Akademi University, Turku 20520, Finland. 
2 Department of Computer Science, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. 

3.1 Introduction 

Encoding information as DNA strands as in, e.g., DNA Computing, brings up for 

investigation new features based on the specific biochemical properties of DNA 

molecules. Recall that single-stranded DNA molecules can be viewed as words over 

the quaternary alphabet of bases {A, T, C, G}. Moreover, one of the main properties 

of DNA molecules is the Watson-Crick complementarity of the bases A and T and 

respectively G and C. Because of this property two Watson-Crick complementary 

single DNA strands with opposite orientation bind together to form a DNA double 

strand, in a process called base-pairing. Recently, there were several approaches to 

generalize notions from classical combinatorics on words in order to incorporate this 

major characteristic of DNA molecules, see, e.g., [8, 9, 6]. Along these lines, in this 

paper, we generalize the concept of primitivity and define pseudo-primitive words. 

The notion of periodicity plays an important role in various fields of theoretical 

computer science, such as algebraic coding theory, [13], and combinatorics on words, 

[11,2]. An integer p > 1 is a period of a word if any of two letters on the word which 

are distant from each other by p letters are the same. The well-known periodicity 
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theorem by Fine and Wilf states that if a word has two periods p, q and is of length 

at least p + q — gcd(p, q), then gcd(p, q) is also a period of the word, where gcd(p, q) 

is the greatest common divisor of p and q [7]. This theorem can be rephrased as: 

if a power of a word u and a power of a word v share the same prefix of length 

|u| + |u| — gcd(|u|, \v\), then u and v are powers of a same word t. This description 

elucidates the relationship between the Fine and Wilf theorem and the notion of 

primitivity. A word is called primitive if it cannot be decomposed as a power of 

another word. Investigating the primitivity of a word is often the first step when 

analyzing its properties. Moreover, how a word can be decomposed and whether two 

words are powers of a common word are two questions which were widely investigated 

in language theory, see, e.g., [11, 2, 16]. 

While, in classical combinatorics on words we look for repetitions of the form 

ul for some word u and some i > 2, when dealing with DNA molecules (i.e., their 

abstract representation as words) we have to take into account the fact that a word u 

encodes the same information as its complement 9(u), where 9 denotes the Watson-

Crick complementarity function, or its mathematical formalization as an arbitrary 

antimorphic involution. In other words, we can extend the notion of power to 

pseudo-power relative to 9 or simply 9-power. A #-power of u is a word of the form 

u\U2 • • -un for some n > 1, where u\ = u and for any 2 < i < n, Ui is either u or 9{u). 

In this context, we define 9-primitive words as strings which cannot be a 0-power 

of another word. Also, we define the 9-primitive root of a word w as the shortest 



www.manaraa.com

55 

word u such that w is a 0-power of u. In classical combinatorics on words, there 

exist two equivalent definitions for the primitive root of a word w as the shortest 

word u such that w is a power of u, or the unique primitive word u such that w is a 

power of u. The first main contribution of this paper is to propose such equivalent 

definitions for the 0-primitive root of a word, that is, we prove that the ^-primitive 

root of a word w is the unique ^-primitive word u such that w is a 0-power of u. 

In the process of obtaining this result, we also prove an extension of the Fine and 

Wilf theorem. Until now, several extensions of this theorem were proved, see, e.g., 

[1, 3, 4, 12, 14, 15]. In this paper, we look at the case when a #-power of u and a 

0-power of v share a same prefix. If the prefix is longer than a given bound, then we 

prove that u and v are ^-powers of a same word, that is, they share their ^-primitive 

root. Our bound is twice the length of the longer word (u or v) plus the length of the 

other word minus the greatest common divisor of the lengths of u and v. Moreover, 

we show that this bound is optimal. 

The paper is organized as follows. In Section 3.2, we fix our terminology and 

recall some basic results. In Section 3.3 we investigate some basic properties of 9-

primitive words. In particular, we give an extension of the Fine and Wilf theorem 

which implies immediately that we can define the ^-primitive root of a word in 

the two equivalent ways. In Section 3.4, we present several constraints forcing two 

words to share their ^-primitive root. In Section 3.5, we investigate some connections 

between the ^-primitive words that we introduced here and the 0-palindrome words, 
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which were proposed and investigated in [9, 6]. In Section 3.6, we present the optimal 

bound for our extension of the Fine and Wilf theorem. 

3.2 Preliminaries 

Let E be a finite alphabet. We denote by E* the set of all finite words over the 

alphabet E, by e the empty word, and by E+ the set of all nonempty finite words 

over E. The length of a word w, denoted by \w\, is the number of letters occurrences, 

i.e., if w — a\... an with a% € E, 1 < i < n, then |w| = n. For a letter a & E, let 

\w\a denote the number of occurrences of a in w. Therefore, |w| = Xlaes \w\a- We 

say that u is a prefix (resp. a suffix) of v, if v = ut (resp. v — tu) for some t £ E*. 

For any integer 0 < k < \v\, we use the notation preffc(v) (sufffe(v)) for the prefix 

(resp. suffix) of length k of a word v, and Pref (v) (Suff (v)) for the set of all prefixes 

(resp. all suffixes) of v. In particular pref0(v) = e for any word » e S * . An integer 

p > 1 is a period of a word w = a\... an, with s , e S for all 1 < i < n, if az — al+p 

for all 1 < i < n — p. 

A word w € E+ is called primitive if it cannot be written as a power of another 

word; that is, w = un implies n — 1 and w = u. For a word IDGE"1", the shortest 

« e S + such that w = un for some n > 1 is called the primitive root of the word 

w and is denoted by p(w). The following result gives an alternative, equivalent way 

for defining the primitive root of a word. 
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Theorem 3.1. For each word I B G E ' , there exists a unique primitive word t G S + 

such that p(w) = t, i.e., w = tn for some n>\. 

The next result illustrates another property of primitive words. 

Proposition 3.2. Let u G £ + be a primitive word. Then u cannot be a factor of u2 

in a nontrivial way, i.e., if u2 = xuy, then necessarily either x = e or y = e. 

We say that two words u and v commute if uv = vu. The following result 

characterizes the commutation of two words in terms of primitive roots. 

Theorem 3.3. For u, v G S*, the following conditions are equivalent: i) u and v 

commute; ii) u and v satisfy a non-trivial relation, i.e., an equation where the two 

sides are not graphically identical; Hi) u and v have the same primitive root. 

For two words u and v, we denote by u Av the maximal common prefix of u and 

v. The following result from [2] will be very useful in our future considerations. 

Theorem 3.4. Let X — {x,y} C £* such that xy ^ yx. Then, for each words 

u, v G X* we have 

u G xX+, v G yX+, \u\, \v\ > \xy Ayx\, ^ u Av = xy A yx. 

The following result is an immediate consequence. 

Corollary 3.5. Let X = {x, y} C £*, u G xX*, and v G yX* such that \u\, \v\ > 

\xy\. If \u A v\ > \xy\, then p(x) = p(y). 
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Two words u and v are said to be conjugate if there exist words x and y such 

that u — xy and v — yx. In other words, v can be obtained via a cyclic permutation 

of u. The next result characterizes the conjugacy of two words. 

Theorem 3.6. Let u,v G S + . Then the following conditions are equivalent: i) u 

and v are conjugate; ii) there exists a word z such that uz = zv; moreover, this 

holds if and only if u — pq, v = qp, and z — (pq)lp, for some p,q € E* and i > 0; 

Hi) the primitive roots of u and v are conjugate. 

Note that conjugacy is an equivalence relation, the conjugacy class of a word w 

consisting of all conjugates of w. The following is a well-known result. 

Proposition 3.7. If w is a primitive word, then its conjugacy class contains \w\ 

distinct primitive words. 

The following result, known as the Fine and Wilf theorem in its form for words, 

see [2, 11], illustrates a fundamental periodicity property of words. As usual, 

gcd(n, m) denotes the greatest common divisor of n and m. 

Theorem 3.8. Let u,v £ T,*, n = \u\, m = \v\, and d = gcd(n, m). If two powers 

u% and v3 of u and v have a common prefix of length at least n + m — d, then u and 

v are powers of a common word. Moreover, the bound n + m — d is optimal. 

A mapping 9 : S* —> S* is called a morphism (an antimorphism) if for any 

words u, v G £*, 9(uv) — 9(u)9(v) (resp. 9{uv) = 9{v)9{u)). A mapping 9 : E* —>• 
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S* is called an involution if, for all words u G £*, 9(9(u)) = u. Watson-Crick 

complementarity is a typical example of antimorphic involutions; in fact, it is defined 

as the antimorphic involution 9 satisfying 0(A) = T, 0(T) = A, 0(C) = G, and 0(G) = C, 

which is called the Watson-Crick involution. 

For a mapping 0 : S* —>• £*, a word w G S* is called 9-palindrome if w = 9{w), 

see [9, 6]. We say that a word w G S + is a pseudo-power of a non-empty word 

t G S + relative to 9, or simply 9-power oft, if w G *{*, 0(*)}*- Conversely, * is called 

a pseudo-period of w relative to 0, or simply 9-period of w if w G *{*, 0(*)}*. Hence 

* is a 0-period of w if and only if w is a 0-power of t. We call a word w; G E+ 

9-primitive if there exists no non-empty word t G S + such that u; is a 0-power of t 

and |w| > |i|. We define the 9-primitive root ofw, denoted by pgiw), as the shortest 

word * such that w is a 0-power of *. 

3.3 Propert ies of 0-primitive words 

In this section, we consider 0 : S* —> S* to be either a morphic or an antimorpic 

involution, other than the identity function. We start by looking at some basic 

properties of 0-primitive words. 

Proposition 3.9. If a word w e S + is 9-primitive, then it is also primitive. More­

over, the converse is not always true. 

Proof. Suppose that w is a 0-primitive word but not primitive. Then there exists 
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primitive words 

^-primitive words 

Figure 3.1: The sets of primitive and ^-primitive words 

some t G S + such that w = tn with n > 2. By definition of 0-power, w is a 9-

power of t. However, this contradicts the 0-primitivity of w because \t\ < \w\. For 

the converse, since 9 is not the identity function, there exists a letter a such that 

9(a) ^ a. Then, if we take w — a9(a), it is obvious that w is primitive, but not 

^-primitive. • 

Thus, the class of ^-primitive words is strictly included in the set of primitive 

ones, as illustrated in Figure 3.1. 

Proposition 3.10. The 9-primitive root of a word is 9-"primitive. 

Proof. Let w G S + and t — p$(w) be its ^-primitive root, that is, w is a 0-power 

of t. Suppose, now that t is not ^-primitive. Then there exists a word s G S* such 

that t is a #-power of s and \s\ < \t\. Note that 9(t) is a #-power of either s or 9(s). 

Thus, w is a 0-power of s. However, this contradicts that t being the 0-primitive 

root of w because \s\ < \t\. • 

We also obtain the following result as an immediate consequence. 
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Corollary 3.11. The 9-primitive root of a word is primitive. 

Contrary to the case of primitive words, a conjugate of a ^-primitive word need 

not be ^-primitive, as shown by the following two examples. 

Example 1. Let 9 : {A,T, C, G}* ->• {A, T, C, G}* be the Watson-Crick involution de­

fined in Section 3.2. Then the word w = GCTA is ^-primitive, while its conjugate 

w' = AGCT = AG0(AG) is not. 

Example 2. Let 9 : {a, b, c, d}* -» {a, b, c, d}* be a morphic involution defined by 

9(a) = c, 9(c) = a, 9(b) — d, and 9(d) = b. Then the word w = abadcb is 9-

primitive, while its conjugate w' — babadc = (ba)29(ba) is not. 

So, we can formulate the following result. 

Proposition 3.12. The class of 9-primitive words is not necessarily closed under 

circular permutations. 

Fine and Wilf's result on words (Theorem 3.8) constitutes one of the fundamental 

periodicity properties of words. Thus, a natural question is whether we can obtain 

an extension of this result when for two words u, v, instead of taking a power of u 

and a power of v, we look at a 0-power of u and a 0-power of v. First, we analyze the 

case when 9 is a morphic involution; it turns out that in this case we can obtain the 

same bound as in Theorem 3.8. However, since the proof of this result is analogous 

to the one for Theorem 3.8, see for instance [11], we will not include it here. 
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Theorem 3.13. Let 9 : E* —>• E* 6e a morphic involution, « , » S S + wi/i n = |w|, 

m = \v\, and d = gcd(n, m), a(u, 9{u)) G u{u, 9(u)}*, and fi(v, 9(v)) G v{v, 9(v)}*. 

If the two 9-powers a(u,9(u)) and /3(v,9(v)) have a common prefix of length at 

least n + m — d, then there exists a word t G E+ such that u, v € t{t,9(t)}*, i.e., 

pg(u) — pe(v). Moreover, the bound n + m — d is optimal. 

However, as illustrated by the following example, if the mapping 9 is an anti­

morphic involution, then the bound given by Theorem 3.13 is not enough anymore. 

Example 3. Let 9 : {a, b}* —> {a, b}* be the mirror mapping defined as follows: 

9(a) = a, 9(b) = 6, and 9(wi... wn) — wn... w-i, where Wi G {a, b} for all 1 < i < n. 

Obviously, 9 is an antimorphic involution on {a, b}*. Let now u = (ab)kb and 

v — ab. Then, u2 and vk9(v)k+l have a common prefix of length 2\u\ — 1 > \u\ + 

\v\ — gcd(|u|, \v\). However u and v do not have the same ^-primitive root, that is, 

Pe{u) ^ pe{v). 

Before stating an analogous result also for the case of antimorphic involutions, 

we introduce the mapping ip : E* x E —>• N defined as <p(u, a) = \u\a + \u\o(a), that 

is, the number of occurrences of the letters a and 9(a) in the word u. Note that for 

any letter a and any word u, ip(u,a) — cp(u,9(a)) < \u\, with equality only when 

u G {a, 9(a)}*. We will call this mapping the characteristic function on the alphabet 

E. Moreover, lcm(n, m) denotes, as usual, the least common multiple of n and m. 

Theorem 3.14. Let 9 : E* —>• E* be an antimorphic involution, u, v G E +
; and 
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a(u, 9(u)) G u{u, 9(u)}*, j3(v, 9(v)) G v{v, 9(v)}* be two 9-powers sharing a common 

prefix of length at least lcm(|u|, \v\). Then, there exists a word t € S + such that 

«,!)€ t{t, 9(t)}*, i.e., pe(u) — p$(v). In particular, if a(u,9(u)) — f3(v,9(v)), then 

Pe(u) = pe{v). 

Proof. The proof of this result uses the techniques from [4]. First, we can suppose, 

without loss of generality that gcd(|w|, \v\) = 1 and thus lcm(|u|, \v\) = |u||u|. Oth­

erwise, i.e., gcd(|w|, \v\) — d > 2, we consider a new alphabet E' = Sd, where the 

new letters are words of length d in the original alphabet, and we look at the words 

u and v as elements of (S')+ . In the larger alphabet gcd(|tt|, \v\) — 1, and if we can 

prove the theorem there it immediately gives the general proof. Let now |u| = n and 

\v\ = m. If we denote by a'(u,9(u)) e u{u,9(u)}* and p{y,0(v)) G v{v,9(v)}* the 

prefixes of length lcm(n, m) = nm of a(u, 9(u)) and f3(v, 9(v)), respectively, then we 

actually have a!(u, 9{u)) = /3'(v,9(v)). 

Since the mapping 9 is an involution, we can easily notice that for any word w 

and any letter a, ip(w,a) — ip(9(w),a). Moreover, since a'(u, 9(u)) = /3'(v,8(v)), 

whenever, for a letter a, ip(u, a) > 0, we also have that <p(v, a) > 0. 

Suppose now that there exist two letters a and b such that {a, 9(a)} n {b, 9(b)} = 

0, (f(u,a) > 0, and <p(u,b) > 0. Then, since n = \u\ = Xlces luU w e n a v e that 

cp(u, a) < n. Let us look next at the number of occurrences of a and 9(a) in the two 

sides of the equality a'(u,9(u)) = fi'(v,d(v)). Since \a'(u,9(u))\ = \P'(v,9(v))\ = 

nm, where |u| = n, and \v\ = m, we obtain m(p(u,a) — mp(v,a). However this 
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contradicts the fact that gcd(n, m) = 1 and (p(u, a) < n. So, there exists a letter 

a G S such that u G {a,9(a)}+. Since a'{u,9{u)) = fl'(v,0(v)), this implies that 

also v G {a, 0(a)}+. Thus, p$(u) = p$(v). • 

Note that, in many cases there is a big gap between the bounds given in Theorems 

3.13 and 3.14. Moreover, Theorem 3.14 does not give the optimal bound for the 

general case when 9 is an antimorphic involution. In Section 3.6, we show that this 

optimal bound for the general case is 2\u\ + \v\ — gcd(|u|, \v\), where \u\ > \v\, while 

for some particular cases we obtain bounds as low as |w| + \v\ — gcd(|u|, \v\). As an 

immediate consequence of Theorems 3.13 and 3.14, we obtain the following result. 

Corollary 3.15. For any word w G S + there exists a unique 9-primitive word 

t G S + such that w G t{t,9(t)}*, i.e., pe(w) = t. 

Let us note now that, maybe even more importantly, just as in the case of prim­

itive words, this result provides us with an alternative, equivalent way for defining 

the ^-primitive root of a word w, i.e., the 9-primitive word t such that w G t{t, 9(t)}*. 

This proves to be a very useful tool in our future considerations. 

Moreover, we also obtain the following two results as immediate consequences of 

Theorems 3.13 and 3.14. 

Corollary 3.16. Let u,v G S + be two words such that p(u) = p(v) = t. Then 

Pe{u) = pe(v) = pe{t). 
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Corollary 3.17. If we have two words u, v € E+ such that u £ v{v, 9{v)}*, then 

Pe(u) = Pe(v). 

3.4 Relations imposing ^-periodicity 

It is well-known, due to Theorem 3.3, that any non-trivial equation over two distinct 

words forces them to be powers of a common word, i.e., to share a common primitive 

root. Thus, a natural question is whether this would be the case also when we want 

two distinct words to be 0-powers of a common word, i.e., to share a common 9-

primitive root. From [8], we already know that the equation uv — 9(v)u imposes 

pe{u) = p${v) only when 9 is a morphic involution. In this section, we give several 

examples of equations over {u, 9(u),v, 9(v)} forcing pe(u) = p$(v) in the case when 

9 : E* —> E* is an antimorphic involution. 

The first equation we look at is very similar to the commutation equation of two 

words, but it involves also the mapping 9. 

Theorem 3.18. Let 9 : E* —> E* be an antimorphic involution over the alphabet E 

andu,v € E+ . If uv9(v) = v9(v)u, then pe(u) = pe(v). 

Proof. Since uv9{v) = v9(v)u, we already know, due to Theorem 3.3, that there 

exists a primitive word t E T,+ such that u = t% and v9{v) = P, for some i, j > 0. 

If j = 2k for some k > 0, then we obtain immediately that v — 9{v) = tk, i.e., 

p(u) — p{v) = t. Thus, pe(u) = p${t) = p${v). Otherwise, i.e., j — 2k + 1, 
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we can write v = tkt\ and 9{v) = t2tk, where t = tit2 and |ii| = |*21 > 0. Hence, 

9{v) - 9(t1)9(t)k = t2t
k, which implies t2 - 9(tx). In conclusion, u,v E *i{*i, 0(<i)}*, 

for some word ii G S + , i.e., pfl(u) = pe{h) = Pe(v). • 

Example 4. Let 0 : {a, b}* —>• {a, 6}* be defined as 0(a) = b and 0(6) = a, and let 

u = ab and v = aba. Then uv9(v) = v9(v)u — (ab)4 and p<?(u) = pe{v) = a. 

Next, we modify the previous equation, such that on one side, instead of v9(v), 

we take its conjugate 9(v)v. 

Theorem 3.19. Let 9 : S* —> S* be an antimorphic involution over the alphabet S 

and u, v € S + . If v9(v)u = u9(v)v, then pg(u) — pe{v). 

Proof. If we concatenate the word 9(v) to the right on both sides of the equa­

tion v9{y)u — u9(v)v, then we obtain (v9(v))(u9(v)) = (u9(v))(v9(v)). Due to 

Theorem 3.3, this means that there exists a primitive word t € E+ such that 

v9(v) = f and u9[v) = P, for some i,j > 0, j > [i/2]. If z = 2A; for some 

A; > 0, then 9(v) = v = tk and thus also u = t3~k, i.e., p(u) — p(v) = t. Henceforth, 

Pe(u) = pe{t) — po(v). Otherwise, i.e., j = 2k + 1, we can write v = tkt\ and 

9(v) = t2t
k, where t — tit2 and |*i| = \t2\ > 0. Hence, we achieve again t2 = 0(*i), 

which implies that v € ti{ti, 9(ti)}*. Moreover, since u9(v) — P, we also obtain 

u = p-k-% e *i{ti, 0(<i)}*. Thus, ^ (u) = ^(tx) = p0{y). • 

Example 5. Using £ defined in Example 4, let it = a and v = a&a. Then v9(v)u = 

u9{v)v — abababa and /9<?(̂ ) = p<?(w) = o-
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The next result gives an example of a more intricate equation which also imposes 

^-periodicity. 

Theorem 3.20. Let 9 : S* —> S* be an antimorphic involution over the alphabet S 

and u, v e £*. If u2v = vu9(u), then u = 9{u) and p(u) — p{v). 

Proof. Since u2v = vu9(u), due to Theorem 3.6, there exist some words z,t £ T,* 

and some integer k > 0 such that u2 = zt, «0(u) = tz, and u = (zt)kz. This 

representation clarifies that u9(u) can be obtained by cyclically permuting u2. Note 

that this operation preserves the property of the word being square. Thus, u9{u) — 

w2 for some w E £*, and in fact we have u = 9(u) because 9 is length-preserving. 

As a result, the given equation becomes u2v = vu2 so that p{u) = p(v). D 

Observe that the primitive root of a ^-palindromic word is ^-palindrome. As 

such, Theorem 3.20 means that u2v = vu9(u) implies v = 9{v). Examples of u and 

v satisfying u2v — vu9(u) are hence quite trivial like u = wl and v = w3 for some 

^-palindrome w and i,j > 0. 

Next, we look at the case when both uv and vu are ^-palindromic words, which 

also proves to be enough to impose that « ,»£ {t, 9(t)}* for some t € S + . 

Theorem 3.21. Let u,v G S* be two words such that both uv and vu are 9-

palindrome and let t = p(uv). Then, t = 9{t) and either p(u) = p{v) = t or 

u = (ii0(ii))*ii and v = 9(t1)(t19(ti)y, where t = *i0(*i) and i,j > 0. 
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Proof. The equality uv = 9{uv) immediately implies that t = 9(t). Moreover, if u 

and v commute, then p(u) — p(v) = p(uv) — t. Assume now that u and v do not 

commute. Since p(u) ^ p(v) and uv = tn for some n > 1, we can write u — fty 

and v — £2£™~l~1 for some i > 0 and £i,t2 £ S + such that t = £i£2. Thus, wu = 

i2*n_1ii = (Mi)™ and since vu = 0(vu) we obtain that also t^h is ^-palindrome, i.e., 

*2*i = 0(*2*i) = 0(*i)0(*2)- Now, if |ti| = |*21, then i2 = 0(*i) and thus t = *i0(*i), 

u — tHi, and v — 9(ti)tn~%~1. Otherwise, either |*i| > |i2| or |*i| < |i2|- We consider 

next only the case \t\\ > \t2\1 the other one being similar. Since £2*1 = 9(ti)9(t2), we 

can write 9(t\) = t2X and t\ — x9(t2) for some word i £ S + with x — 9(x). Then, 

since t — 9(t) we have that t = txt2 = x0(i2)i2 = 9(x9(t2)t2) = 0(i2)*2^- Hence, x 

and 9(t2)t2 commute, which contradicts the primitivity of t. • 

Example 6. With 9 defined in Example 4, let u — aba and v = babab. Then both uv 

and vu are 0-palindrome. For such u and v, t = p(uv) — ab = a9(a). 

As an immediate consequence we obtain the following result. 

Corollary 3.22. For u, v G £*, 2/ uv = 0(«u) and iw = 9(vu), then pe(u) = 

pg(9(v)). In particular, there exists some t € S +
 SUC/J that u, v € {£, #(i)}*-

3.5 On ^-primitive and 0-palindromic words 

In this section, we investigate some word equations under which a ^-primitive word 

must be 0-palindrome. Throughout this section we consider 9 : S* —> S* to be an 

file:///t2/1
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y v 9(v) 

Figure 3.2: The equation 9(v)vx = yv9(v) 

antimorphic involution over the alphabet E. 

Theorem 3.23. Let 9 : E* —>• E* be an antimorphic involution over the alphabet E 

and v £ E+ be a 9-prirnitive word. If 9(v)vx = yv9(v) for some words x, y £ E* 

with \x\, \y\ < \v\, then v is 9-palindrome and x = y = e. 

Proof. Assume there exist some words x,y £ E* with |x|, \y\ < \v\, such that 

9{v)vx — yv9(v), as illustrated in Figure 3.2. 

Then, we can write v = V1V2 = 1*2̂ 3, with i>i, 1*2,̂ 3 £ E*, y = ^(^2) = x, 

Vi = 9(vi), v3 — 9(v3). Since vxv2 = ^2^3, we can write v\ — pq, v3 = qp, v2 = (pq)lp, 

and v = {pq)l+1p for some words p, q £ E* and some i > 0. Thus, pq = 9{pq) and 

qp — 9(qp), which, due to Theorem 3.21, leads to one of the following two cases. 

First, if p — tkt\ and q — 9(ti)t:i, where k,j > 0 and t — ti9(t\) is the primitive 

root of pq, then we obtain that v = <(*+J+1)(*+1)+*t1 with (k + j + l)(i + 1) + k > 1, 

which contradicts the 0-primitivity of v. Second, if p(p) — p{q) — t, then also 

v £ {t}* where t — 9(t). Thus, v — 9(v), and the initial identity becomes v2x = yv2. 

However, since v is ^-primitive and thus also primitive, we immediately obtain, due 
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to Proposition 3.2, that x = y = e. • 

In other words, the previous result states that if v is a ^-primitive word, then 

9(v)v cannot overlap with v9(v) in a nontrivial way. However, the following example 

shows that this is not the case anymore if we look at the overlaps between 9(v)v 

and v2, or between v9(v) and v2, respectively, even if we consider the larger class of 

primitive words. 

Example 7. Let 9 : S* —>• S* be an antimorphic involution over the alphabet £, 

p,q € T,+ such that p(p) ^ p(q), p = 9(p), and q = 9(q), and let v = p2q2p and 

u — pq2p2. It is easy to see that u and v are primitive words. In addition, if we take 

S = {a, b}, the mapping 9 to be the mirror image, p = a, and q = b, then u and v 

are actually ^-primitive words. Since 9{v) — pq2p2 and 9(u) = p2q2p, we can write 

xv2 — v9(v)y and y9(u)u = tf22 where x — p2q2, y = pq2p, and 2 = q2p2. Thus, for 

primitive (resp. ^-primitive) words u and v, v9(v) can overlap with w2 and 9{u)u 

with u2 in a nontrivial way. 

Maybe even more surprisingly, the situation changes again if we try to fit v2 

inside v9(v)v, as shown by the following result. 

Theorem 3.24. Let 9 : S* —> S* be an antimorphic involution over the alphabet S 

and v € E+ be a primitive word. Ifv9(v)v — xv2y for some words x, y 6 £*, then v 

is 9-palindrome and either x = e and y = v or x = v and y — e. 

Proof. Suppose that v9(v)v = xv2y for some words x,y € S*, as illustrated in 
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9(v) 

x Vl f{v2)\ 

\ v2 

9{Vl) X 

; V2 

Vl 

Figure 3.3: The equation v9(v)v — xv2y 

Figure 3.3. 

If we look at this identity from left to right, then we can write v — xvi = v±v2, 

with vi,v2 € T,* such that |x| = \v2\ and 9{v) — 9(v2)9(vi). Then, if we look at 

the right sides of this identity, then we immediately obtain that x = v2 and v\ — y. 

Thus, v — xy = yx, implying that x, y G {t}*, for some primitive word t. However, 

since v is primitive, this means that either x = e and y = v or x = v and y = e. 

Moreover, in both cases we also obtain v = 9(v). • 

3.6 A shorter bound for the Fine and Wilf theo­

rem (antimorphic case) 

Throughout this section we take 9 : S* —)• S* to be an antimorphic involution, 

«,» £ E+ with |u| > |u|, a(u,9(u)) be a 0-power of u, and (3(v,9(v)) be a #-power 

of v. Recall that a(u, 9{u)) starts with u and f5{v, 9{v)) starts with v. We start our 

analysis with the case when v is ^-palindrome. 
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9(u) 

! | u | - l 

0(u2) 0(t>i) 

Figure 3.4: The common prefix of u9{u) and vn of length \u\ + \v\ — 1 

Theorem 3.25. Let u and v be two words with \u\ > \v\ and v = 9(v). If there 

exist two 9-powers a(u,9{u)) G u{u,9(u)}* and f3(v,9(v)) G v{v,9(v)}* having a 

common prefix of length at least \u\ + \v\ — gcd(|u|, \v\), then pe{u) — p${v). 

Proof. First, we can suppose, without loss of generality that gcd(|tt|, \v\) = 1. Oth­

erwise, i.e., gcd(|u|, \v\) — d > 2, we consider a new alphabet S' = Srf, where the 

new letters are words of length d in the original alphabet, and we look at the words 

u and v as elements of (S')+ . In the larger alphabet gcd(|u|, \v\) — 1, and if we can 

prove the theorem there it immediately gives the general proof. 

Since v = 9(v), /3(v,9(v)) — vn for some n > 2. Moreover, if v G S, then 

trivially u G v{v,9(v)}*, i.e., pe{u) = po(v). So, suppose next that \v\ > 2 and, 

since gcd(|u|, \v\) = 1, u = v*V\, where i > 1 and v = V1V2 with Vi,v2 G S + . 

If a(u, 9(u)) = u2a'(u, 9(u)), then u2 and vn have a common prefix of length at 

least |u| + |u|—gcd(|u|, \v\), which, due to Theorem 3.8, implies that p(u) — p(v) — t, 

for some primitive word t G S + , and thus po(u) = peit) — pe(v). 

Otherwise, a(u, 9(u)) — u9(u)a'(u,9(u)) for some a'{u, 9{u)) G {u, 9(u)}*. Now, 
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we have two cases depending on \vi\ and \v2\- We present here only the case when 

l̂ iI < \v2\, see Figure 3.4, the other one being symmetric. Now, since 9 is an 

antimorphism, 0(suff|„|_i(it)) = pref|„|_1(^(u)). So, we can write v2 — 0(vi)z for 

some z £ £*, since \vi\ < \v2\ < \v\ — 1 = \v\ — gcd(|u|, \v\). Now, to the left of the 

border-crossing v there is at least one occurrence of another JJ, SO we immediately 

obtain z = 9(z), as v2 = 9(vi)z and 9(v2) — 9{z)vi. Then, v = v\9{vi)z = zvi9(vi) — 

9(v) which implies, due to Theorem 3.18, that p$(vi) = pe(z). So, since v = Vi9(vi)z 

and u — vlvi = {viO{v\)z)%vy, we obtain p$(u) = peiy). D 

Let us look next at the case when u is ^-palindrome. 

Theorem 3.26. Let u and v be two words with \u\ > \v\ and u = 9{u). If there 

exist two 9-powers a(u,9(u)) € u{u, 9(u)}* and (3(v,9(v)) e v{v,9(v)}* having a 

common prefix of length at least \u\ + |u| — gcd(|M|, \v\), then p${u) = p${v). 

Proof. As in the previous proof, we can suppose without loss of generality that 

gcd(|u|, |u|) = 1. Also, since u = 9(u), we actually have a(u,9(u)) = un for some 

n > 2. Moreover, since u starts with v and u = 9(u), we also know that u ends with 

9(v). Now, if v e S, then trivially u € v{v,9(v)}*, i.e., pe{u) = po(v). So, we can 

suppose next that \v\ > 2 and thus, since gcd(|u|, \v\) — 1, we have u = /3'(v, 9(v))v', 

where /3'(v, 9(v)) is a prefix of 0(v, 9{v)) and v' e S+ , v' e Pref (v) U Pref {9{v)). 

Case 1: We begin our analysis with the case when the border between the first 

two u's falls inside a v, as illustrated in Figure 3.5. Then, we can write v = v\v2 = 
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MT.K 
1 
1 

1 

1 1 I V 1 

V 

V{v) ! v 

9{v2)\ ; w2 \v3 

v2 | « i : W2 | i 

W U ' 

1 

1 

Figure 3.5: The common prefix of u2 and (3(v,9(v)) of length |w| + \v\ — 1 

v2v% where v\, v2, v^ G S+ , implying that v\ = xy, v3 — yx, and v2 — {xy)3x for some 

j > 0 and x,y G S*. Moreover, since w ends with 0(u), we also have V\ = 9{v\), 

i.e., xy = 9(y)9(x). If x — e, then t>i,i>2,V3,v € {y}*, which implies that also 

u G y{y,9{y)}*, i.e., ^ (u) = p9(v) = pfl(y); moreover, since gcd(|u|, \v\) = 1 we 

actually must have y G S. Similarly, we also obtain p$(u) = p$(v) when y — e. So, 

from now on we can suppose that x, y G S + . 

Let us consider next the case when, before the border-crossing v we have an 

occurrence of another v, as illustrated in Figure 3.5. Then, we have that v2 — 9(v2), 

i.e., (xy)3x = (9(x)9(y))39(x). If j > 1, then this means that x = 9(x) and y = 9(y). 

Then, the equality xy — 9(y)9(x) becomes xy — yx. So, there exists a word t G S + 

such that x, y G {t}*, and thus also v G {t}+ and u G t{£, 9(t)}*, i.e., p (̂w) = Pfl('y). 

Otherwise, j = 0 and we have :c = 0(x). But then, the equality xy = 9{y)9{x) 

becomes xy = 9(y)x, implying that x = p(qp)n and y = (gp)m for some m > 1, 

n > 0, and some words p and q with p = 9{p) and Q = #(</), see [8]. Since u2 

and /3(v,0(v)) share a common prefix of length at least |u| + \v\ — gcd(|it|, \v\) = 
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U, U r . . . _ - » U 

^(W3)i^(v2); «1 J ^2 
i i i 

i i i 

, , \9(v2)\e(Vl)\ 
v ••• flf,A 

1 

1 1 

9(v) 

Figure 3.6: The common prefix of u2 and {3(v, 9(v)) of length \u\ + \v\ — 1 

|u| + |u| — 1, V3 and some (3'(v,9(v)) share a prefix of length |u3| — 1. Furthermore, 

as v3 — yx — (qp)mp(qp)n, v — viv2 = p(qp)m+np(qp)n, and 9(v) = (pq)np(pq)m+np, 

this means that independently of what follows to the right the border-crossing v, 

either v or 9(v), we have two expressions over p and q sharing a common prefix of 

length at least |p| + \q\. So, due to Corollary 3.5, p,q £ {£}* for some t G S + , which 

implies that also x, y, v € {t}+ and u G {£, #(i)}+, i.e., pe{u) — pe(v). 

Now, suppose that before the border-crossing v we have an occurrence of 9(v). 

If \u\ < 2\v\ + \vi\, then, since (3(v,9(v)) starts with w, we must have v = 9(v), in 

which case we can use Theorem 3.25 to conclude that pg(u) = peiy). Otherwise, 

|u| > 2\v\ + \v\\ and since u = 9(u), u ends either with v9(v) or with 9(v)9(v). In the 

first case, we obtain t>3 = #(113), i.e., yx = 9(yx), which together with xy — 9{xy) 

imply, due to Corollary 3.22, that x,y G {t, 9(t)}*, for some t G S + and thus, 

Pe(^) = pe(y). In the second case, we obtain vi = v$, i.e., xy — yx. So, x, y G {i}*, 

and thus also u G {t}+ and u G i{t, 9(t)}*, i.e., pg(u) = pe(f). 

Case 2: Let us consider now the case when the border between the first two w's 
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falls inside 9(v), as illustrated in Figure 3.6. Then, we can write again v = viv2 = 

V2V3 where vi, V2, V3 G £ + , which implies that v\ — xy, v% = yx, and V2 = {xy)3x for 

some j > 0 and x, y G E*. Just as before, if x = e or y = e, we immediately obtain 

that p$(u) = pg(v). So, we can suppose that x,y G S + . Moreover, vi = 0(«i), i.e., 

xy = 9(xy). Now, if the border-crossing 0(v) is preceded by an occurrence of v, 

then we also have v$ = ^(^3), i.e., yx — 9(yx). Then, due to Corollary 3.22, there 

exists some ( e S + such that x, y G {£, 9(t)}*, implying that pe(u) — p$(v), since 

v = (xy)3+1x and u = j3'(v,9{v))9{v2)- If, on the other hand, the border-crossing 

9(v) is preceded by another 9(v), then we immediately obtain v\ = W3, i.e., xy = yx. 

So, x,y G {£}*, for some t € S + , and thus also v € {t}+ and u G i{i,^(t)}*, i.e., 

/?e(u) = pe(v). D 

Although the previous two results give a very short bound, i.e., |u| + \v\ — 

gcd(|u|, \v\), this is not enough in the general case, as illustrated in Example 3. 

Nevertheless, we can prove that, independently of how the 0-power a(u, 9{u)) starts, 

2\u\ + \v\ — gcd(|u|, \v\) is enough to impose pe{u) = pe(v). The first case we consider 

is when a(u,9(u)) starts with u2. 

Theorem 3.27. Given two words u, v G S + with \u\ > \v\, if there exist two 9-

powers a(u, 9{u)) G u{u, 9(u)}* and /3(v, 9(v)) G v{v, 9(v)}* having a common prefix 

of length at least 2\u\ + \v\ — gcd(|u|, \v\) and, moreover, a{u,9{u)) = u2a'(u, 9(u)) 

for some a!{u,9{u)) G {u,9(u)}+, then pe(u) = pe{v). 
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Figure 3.7: The prefix of uV(u , 9{u)) and /3{v, 9{v)) of length 2|u| + |v| - 1 

Proof. Just as we did before, we can suppose, without loss of generality, that 

gcd(|w|, \v\) = 1. Now, if v G E, then trivially u G v{v,9(v)}*, i.e., pe(u) = pe(v). 

So, we can suppose next that \v\ > 2 and thus, since gcd(|u|, \v\) — 1, we have 

u — f3'(v, 9(v))v', where P'(v, 9(v)) is a prefix of /3(v, 9(v)) and v' G S + is a prefix of 

either v or 9(v). 

Case 1: Let us look first at the case when the border between the first two 

u's falls inside v, i.e., u = 0'(v,9(v))vi for some v\ G S + such that v = viv2 and 

P'(v,9(v)) G v{v, 9(v)}* is a prefix of fi(v,9(v)). Moreover, if this border-crossing 

v is followed to the right by another v, then v2 = v\vv2, since pref|v[(u) = v. 

Thus, v\v2 — v2v\, meaning that there exists a primitive word t G E+ such that 

Vi,v2 G {*}+ and thus v G {i}+- Moreover, since u = /?'(i;, #(?;))vi, we also have 

u € £{£, 9(t)}*, i.e., /?<?(«) = Ptf(^)- Otherwise, the border-crossing v is followed to 

the right by 9(v), as illustrated in Figure 3.7. Thus, we can write v = viv2 = v2vs 

with ^1,^2,^3 G S+ , 1̂ 1 = |D3|, and v$ = 9(v3). But then, Theorem 3.6 implies that 

there exist some i > 0 and some x,y G S* such that i>i = xy, v3 = yx, v2 — {xy)%x, 
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and v = (xy)%+1x. If x = e, then we have that vu V2-,v3,v G {y}+, which implies 

that also u G y{y, 0(y)}*, i.e., pe{u) = pe{v). Similarly, we also obtain pe(u) = pe(v) 

when y = e. So, from now on we can suppose that x, y G S + . 

Suppose first that i > 1. If we take \/3'(v, 9(v))\ = A;|t>| with A; > 1, then the 

length of the first u is |u| = k\v\ + |t>i| = k(i + l)\xy\ + k\x\ + \xy\. Since the second 

it starts with w2 = (xy)lx, using length arguments, we must have that its right end 

will fall inside either v or 9(v), after exactly 2\xy\ characters. If the right end of 

the second u falls inside 9(v) — (yxY+19(x), then suff|X2/|(w) — yx. But, the first 

u ended with v\ = xy. So, xy = yx, which implies that there exists a primitive 

word t G S + such that x,y G {£}*, and thus also v G {i}+ and w G i{i, ^(i)}*, i.e., 

P<?(̂ ) = Pe(t) = p^(v). Otherwise, the right end of the second u falls inside v, i.e., 

suff2\xy\ (u) = xyxy. Actually, depending on what precedes to the left this second 

border-crossing v, either v or 9(v), we have suff\x\+2\Xy\(u) G {xxyxy,9(x)xyxy}. 

Next, we look at the suffix of the first u and we have again two cases depending 

on what precedes the first border-crossing v. If there is a v to the left of this 

border-crossing v, then suff|I|+2|Xs/|('w) = xyxvi, and thus we obtain immediately 

that xy = yx. So, in this case there exists a primitive word t G S+ , such that 

v G {t}+ and u G t{t, 9(t)}*, i.e., p$(u) — pe{y). Otherwise, there is a 9{v) to 

the left of the border-crossing v, i.e., suff|x|+2|a;j/[(u) = yx9(x)v\. Thus, in this case 

we obtain that either yx9{x) = xxy or yx9(x) = 9{x)xy. However, in both cases, 

due to Theorems 3.19 and 3.20, we obtain x, y G {t, 9(t)}* for some t G S+ , which 
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v or 9(v) 

Figure 3.8: The prefix of u2a'(u,6(u)) and (3(v,9(v)) of length 2\u\ + \v\ - 1 

immediately implies pe(v) = pe(u). 

Suppose next that i — 0, i.e., v\ = :ry, W3 = yx, v% = x, v = xyx, and 0(ya;) = yx, 

as illustrated in Figure 3.8. Now, if we compute the length of the first u, then we 

have \u\ = k\v\ + \xy\ for some k > 1. Since the second u starts with v2 = x, 

we must have that its right end will fall inside either v or 9(v), after exactly \y\ 

characters. Now, we have two cases depending on what occurs to the left of this 

second border-crossing point. 

Firstly, if there is a v occurring before this border-crossing point, then suff2|Xy| (u) = 

xyxy. Next, we turn again to look at the suffix of the first u. Depending on whether 

there is v or Q{v) to the left of the first border-crossing v, we have suff2\xy\ (u) € 

{yxxy,9(y)9(x)xy}. Thus, either yx = xy or 9{xy) — xy. However, since also 

9(yx) = yx, we obtain that either x,y G {t}* or x,y £ {t, 9(t)}* for some t € S+ , 

and thus pe(u) = p$(v). 

Secondly, if 9{v) = 9(x)9(y)9(x) occurs to the left of the second border-crossing 

point, since s\jff\xy\(u) — v\ — xy, then we obtain immediately that x = 9(x). But, 
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9{v) 9(v) " ' v or 9{v) 

Figure 3.9: The prefix of u2a!(u, 9{u)) and P{v, 9{v)) of length 2\u\ + \v\ — 1 

we already knew that yx — 9(yx), i.e., yx = x9(y), which implies a; = p(qp)j and 

y = (p<?)fe for some j > 0, k > 1, and some words p and <? such that p = 0(p) 

and q = 9(q), see [8]. Now, since a(u,9(u)) and f3(v,9(v)) have a common prefix 

of length 2\u\ + |w| — gcd(|u|, \v\) — 2\u\ + \v\ — 1, we can also look at the prefix of 

length \v\ — 1 of the third word from a(u, 9(u)), which is either u or 9{u). However, 

in all cases, after we reduce the common prefix, we have two distinct expressions 

over p and q of length longer than |p| + |^|, which implies, due to Corollary 3.5, that 

pq — qp- Thus, also in this case pe(u) = pe{v). 

Case 2: Consider now the case when the border between the first two u's falls 

inside 9(v). If this border-crossing 9(v) is followed to the right by another 9(v), as 

illustrated in Figure 3.9, then there exist some v\, v2 G S + such that v = viv?, v\ = 

9(vi), and v2 = 9(v2). Thus, obviously v,9(v),u,9(u) £ {vi,V2}+, i.e., a(u, 9(u)) 

and (3(v,9(v)) are actually two expressions over {vi ,^} having a common prefix of 

length 2|'u| + |f |—gcd(|w|, \v|) = 2|u| + |u| —1. Moreover, since \u\ = fc|u| + |v2| for some 

k > 1 and the second u begins with v±, its right end cuts a v or 9{v) after exactly 
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v '" ' 9(v) v "" vor9(v) 

Figure 3.10: The prefix of u2a'(u,9(u)) and P(v,9(v)) of length 2\u\ + \v\ - 1 

(2|w2| mod \v\) ^ 1̂21 characters. Thus, the two expressions over {^1,̂ 2} have to 

differ at some point, and moreover, after we eliminate the common prefix we remain 

with two distinct expressions over vi and i>2 of length longer than \vi\ + \v2\, which 

implies, due to Corollary 3.5, that V1V2 — i>2fi- Thus, also in this case p${u) — pe(v). 

Hence, the border-crossing 9(v) is followed to the right by v, as illustrated in 

Figure 3.10. Then, we can write v = V1V2 — V2V3 for some ^1,^2,^3 G S + with 

\v\I = \vs\ and v\ = 9{v\). Thus, due to Theorem 3.6, there exist some words 

x, y G S* and some % > 0 such that v\ = xy, V3 = yx, v2 = (xyYx, and v = (xy)l+1x. 

Again, if either x = e or y = e, then we obtain immediately that po(u) — pe(v). So, 

from now on, we can suppose that x, y G E+ . Moreover, since u ends with #(i>2), we 

also know that 9{u) starts with V2 = {xy)xx. 

Suppose first that i > 1. Then, the length of the first u is |u| = k\v\ + \v2\ = 

k\v\ + i\xy\ + \x\ for some k > 1. Since the second w starts with 0(ui) = sy, its 

right end will cut either v or 9(v) after exactly \x\ + (i — i)\xy\ characters. If this 

second border point falls inside v, since both u and 9(u) start with xy, we obtain 
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xy = yx. That is, there exists a primitive word t e E + such that x, y, v G {t}+ 

and u G t{t,9(t)}*, i.e., pg(u) — pe(v). Otherwise, this second border point cuts 

9(v) — 9(x)(xyY+1 after exactly \x\ + (i — l)\xy\ characters. Then, since u ends with 

0(^2) = 9(x)(xy)\ depending on whether to the left of this second border-crossing 

9(v) we have either v or 9{v), we obtain either yx9(x) = 9(x)xy or xy9(x) — 9(x)xy. 

In the first case, Theorem 3.19 implies x,y G {t, 9(t)}* for some t G S + , while 

in the latter one we obtain x — 9(x) and p(x) = p{y). Since v — (xy)l+lx and 

u — P'(v,9(v))9(v2), we conclude again that pe(u) — peiy). 

Otherwise, we have i = 0, i.e., v\ — xy, V3 = yx, i>2 = x, v — xyx, and 

9(v) = 9(x)xy. Using again length arguments, we notice that the right end of the 

second u cuts either v or 9(v) after exactly 2\x\ characters. 

Let us look first at the case when this second border point falls inside 9(v). 

Then x = 9{x), as u ends with 9(v2) = 9{x). Since a(u, 9(u)) and f3(v, 9(v)) have a 

common prefix of length 2\u\ + \v\ — gcdd^l, \v\) = 2\u\ + \v\ — 1, we can also look 

at the prefix of length \v\ — 1 of the third word from a{u,6(u)), which is either u 

or 9{u). Since u ends with 9{v2) = 9{x), we know that both u and 9{u) start with 

x. Furthermore, since 9(xy) — xy, we actually have two distinct expressions over 

{x,y}+, one starting with x and the other with y, having a common prefix longer 

than |x| + \y\, implying, due to Corollary 3.5, that xy = yx. So, also in this case 

Pe{u) = pe(v). 

Next, we turn to the case when the second border point falls inside v and we 
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u -^j x y x 
; xy ; x 9{x) x9(x)9(y) 

x y x 9{x)\9{xy)\ x y x . x.. 

9{v) 
~£[i]F 

Figure 3.11: The prefixes of u a'(u,9(u)) and 0(v,9(v)) of length 2\u\ + \v\ 

analyze two cases depending on the length of u. Firstly, if |u| > 2|v|, then the first 

u starts either with v2 or with v9(v) and we look at the prefix of the second u, see 

Figure 3.10. In the former case, we obtain immediately that xy = yx, which implies 

that there exists a primitive word t e E+ such that x, y, v G {t}+ and u G t{t, 9(t)}*, 

i.e., po(u) = p$(v). In the latter case, we obtain yx = 9(yx), which together with 

xy = 9{xy) implies, due to Corollary 3.22, that x,y £ {£, 9(t)}* for some t € S+ , 

and thus also pe{u) — pg(v). 

Secondly, if |u| < 2\v\, then we actually must have u = v9(v2) = xyx9(x), as 

illustrated in Figure 3.11. Since a(u,9(u)) and f3(v,9(v)) have a common prefix 

of length 2\u\ + |u| — 1, after eliminating the common prefix, we obtain one of the 

following four equations, depending on whether the third block of a(u, 9{u)) is u or 

9(u), and the fourth block of /3(v, 9(v)) is v or 9{v). 

- If we have 9(x)xy pref|a.|_1(x) = yxx pref|x|_1(ya;), then pref|x|(yx) = 9(x), and 

thus we obtain pref|x|_1(x) = prefjx|_1(^(a:)). Now, if we denote x = x\.. .xn 

with xi,... ,xn € E, then the equation pref^^a;) = pref|I|_1(^(x)) becomes 
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xi.. .xn-i = 9(xn).. .9{x2)- Depending on whether \x\ is even or odd, this 

equality implies x = x\... Xk9{x\... x/.) or x — x\... XkXk+\9{xi... Xk) with 

Xk+i — 9(xk+i)- However, on both cases, we obtain x — 9{x). Then, from the 

initial equation 9{x)xy p r e f ^ ^ x ) = yxx prei^^(yx) we obtain x2y = yx2, 

which implies p(x) = p{y). Hence, also pe(u) = pe{v). 

- If 9{x)xy = yx9(x), then, due to Theorem 3.19, we immediately obtain x,y € 

{£, 9(t)}* for some t £ S + , and thus p$(u) — pe(v). 

- If 9{x)x pref\xy\_l(9(x)9(y)) — yxx pref^^(ya;), then we can write yx = 9(x)z 

for some word z £ E + with \z\ — \y\. If we substitute this equation into the 

initial one, we obtain x9(z) p r e f ^ ^ x ) = zx pref|x|_1(^(x)), which implies 

that X\... xn-i = 9(xn)... 9(x2), where x = x\... xn with xi,...,xn G S. 

Just as before we can derive again x = 9(x). Since xy = 9(xy), we can write 

xy — 9(y)x which implies that x = p(qp)j and y = (qp)k, for some j > 0, 

k > 1, and some words p and q such that p = 9(p) and q = 9(q), see [8]. Then, 

using these relations, the initial equation becomes a nontrivial identity over p 

and q of length more than \p\ + \q\. Thus, due to Corollary 3.5, there exists a 

primitive word t such that p,q,x,y G {t}+. So, pe(u) = p$(v). 

- If 9(x)x pref|Ij/|_1(^(x)0(?/)) = yx9(x) pref^^^x), then we can write again 

yx = 9{x)z for some word z G E+ with |z| = |y|. Thus, the initial equa­

tion becomes x9(z) — z9(x). If in the equation xy = 9(y)9(x) we concate-
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nate x9(x) both to the left and to the right, then we derive x9(x)xyx9(x) — 

x9(yx)9(x)x9(x). Substituting yx — 9{x)z and 9{yx) = 9(z)x, we derive 

x9(x)x9(x)z9(x) = x9(z)x9(x)x9(x). Now, since x9(z) = z9(x), this becomes 

(x9(x))2x9(z) — x9(z)(x9(x))2, which implies that there exists a primitive 

word t G S + such that x9(x),x9(z) G {£}*. If x9(x) = t2j for some j > 0, then 

x = 9(x) = t3,t = 9(t), z,y E {t}*, and thus pe{u) = p9(v). Iix9(x) = t2]+1 for 

some j > 1, then we actually have x = Pti, 9(x) — 9{ti)P, and 9(z) = 9(ti)tk 

where t = ti9(ti) and k > 0. Now, from the equation yx = 9(x)z we also obtain 

that y G {h,9(ti)}+. So, also in this case we can conclude that p$(u) = p$(v). 

• 

Next, let us look at the case when a(u, 9{u)) starts with u9(u)u. 

Theorem 3.28. Given two words u,v G E+ with \u\ > \v\, if there exist two 9-

powers a(u, 9(u)) G u{u, 9(u)}* and )3(v, 9(v)) G v{v, 9(v)}* having a common prefix 

of length at least 2\u\+\v\—gcd(|u|, \v\) and, moreover, a(u,9(u)) = u9(u)ua'(u,9(u)) 

with a'(u,9(u)) G {u, 9(u)}*, then pg{u) = po(v). 

Proof. Let us suppose again, just as we did before, that gcd(|u|, \v\) = 1. If we 

denote v! = u9(u), then u'v! and f3{v,9(v)) have a common prefix of length |«'| + |u| — 

gcd(|u'|, \v\) = \u'\ + \v\ — 1 and, moreover, u' = 9(u'). Thus, due to Theorem 3.26, 

Pe{v) = pe(u'); let this ^-primitive root be t. Then, u9(u) = 7(4, 9(t)), for some 
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0-power 7(t, 9(t)) £ t{t,9(t)}+, which implies, due to Theorem 3.14, that po{u) — 

t = pe(v). • 

The only case which remains to be considered now is when a(u, 9{u)) starts with 

u9{u)9(u). Next, we give two intermediate results concerning ^-palindromic words, 

which will be very helpful in the proof of Theorem 3.31. 

Lemma 3.29. Let w € S + and x, y, z be 9-palindromes. If w = xy = yz, then there 

exists a 9-palindromic primitive word p G S + such that w,x,y,z € {p}+-

Proof. Since w = xy with x — 9(x) and y — 9(y), we know from [10], that there exist 

two ^-palindrome words p, q and an integer n > 1 such that w = (pq)n, where pq is 

a primitive word, p / e, x — {pq)%p, y = q(pq)n~l~l, y = (pqYp, and z = qipq)^3'1 

for some integers 0 < i, j < n. If n — i — 1, j > 1, then pq, qp e Pref (y), i.e., pg = <?p. 

Since pq is primitive, this means that q = e. Therefore, p is a primitive word and 

w,x,y,z e {p}+- If n — i — 1 > 1 and j = 0, then qipq)^1-1 = p, which implies 

that n — i — 1 — 1 and hence q = e, and we reached the same conclusion as above. If 

n — i — 1 — 0 and j > 1, then <? = (pq)Jp, which cannot hold for any j > 1 because 

p ^ e . If both n — i — 1 and j are 0, then p — q, which contradicts the primitivity 

of pq. • 

Lemma 3.30. Let w G E+ and x,y,z be 9-palindromes. If w = xy2 = yz, then 

there exists a 9-palindrome primitive word p £ E+ such that w,x,y,z € {p}+-



www.manaraa.com

87 

Proof. Since w = yz with y — 9(y) and z = 9(z), we know from [10], that there exist 

two ^-palindrome words p, q and an integer n > 1 such that w = (pq)n, where pq is 

a primitive word, p / e, x — (pq)lp, y2 = q{pq)n~l~x, y = (pq)JP, and 2 = q(pq)n~3~l 

for some integers 0 < i, j < n. If n — i — 1, j > 1, then, just as in the proof of 

Lemma 3.29, pq — qp. Since pq is primitive, q — e, and hence p is primitive and 

x, y, z G {p}+. If n — i — 1 > 1 and j = 0, then y — p. Since y1 — q{pq)n~%~x', we 

have that p2 — q(pq)n~t~1, which means, due to Theorem 3.3, that p,q & {t}* for 

some primitive word t. Since pq is primitive, this implies that q = e, p — t, and 

x,y,z G {p}+. Ifn — •£ — 1 = 0 and j > 1, then y2 = q and y = (pq)3p, which are 

clearly contradictory. If both n — i — 1 and j are 0, then y2 = q and y = p, which 

contradicts the primitivity of pq. • 

Now, we can state the following result which considers the last case of our anal­

ysis. 

Theorem 3.31. Let u, v G S + be two words with \u\ > \v\. If there exist two 9-

powers a(u,9(u)) G u9(u)2{u,9(u)}* and f3(v,9(v)) G v{v, 9(v)}* having a common 

prefix of length at least 2\u\ + \v\ — gcd(|u|, \v\), then p$(u) — p$(v). 

Proof. Once again, we can suppose that gcd(|t/|, \v\) — 1 without loss of generality. 

If v G S, then trivially u G v{v,9(v)}*, i.e., p${u) = pg(v). So, we can suppose next 

that \v\ > 2 and thus, since gcd(|u|, \v|) = 1, the end of both of u and u9(u) falls 

inside either v or 9(v). Let fi(v,9(v)) = U1V2 • • • vnvn+ivn+2l3'(v, 9(v)) with ^i = v, 
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9(vj) =± v 6(v3-i) = 9(v) 

Figure 3.12: The case where n is even, v3-\ = v, v3 = 9(v), and v3+i = v. 

vt G {v,9(v)} for all 2 < % < n + 2, and P'(v,9(v)) G {v,9(v)}* such that the end 

of u9(u) falls inside vn+i. Let u9{u) — v\ • • -VnV1, where v' E Pref(vn+i). Note that 

since u9(u) is ^-palindrome, u9(u) = 9(v')9(vn) • • -9(vi). Moreover, the end of u 

falls inside W(n+2)/2 if n is even and inside i>(„+i)/2 if n is odd. So, from now on we 

take j = I ? ^ whenever n is even and j = lk^- otherwise, i.e., j is chosen such that 

the border between u and 9{u) falls inside vr 

Let us consider first the case when n is even. Then x, a prefix of v}, overlaps 

with a suffix of 9(v3), see Figure 3.12, and the overlap implies x = 9(x). Note that 

x is a nonempty and proper prefix of v3. 

Now we focus on v3-i, v3, and v3+i. Even if j = n, we can consider v3+\ — 

vn+i G {v,#(«)}. Suppose VJ-IVJ = v^(v). If v3+i — 9(v), then 9{v)2 = x9{v)x' 

for some #' G S + . This means that x, 9{v) G { i} + for some primitive word t. 

Since u9(u) = vi- • • v3-\x9(v3-i) • • • 9(v\), we obtain that u, v G {i, 9{t)}+. But v G 

Pref(u), which implies p${u) — po(v). Otherwise, v3+x = v. Then v9(v)w = wv9(v) 

holds for w G Pref(v) with |u;| = \x\, which implies, due to Theorem 3.18, that 
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u 
9{u) 

Vj-i = Wj\=v v3+i — 9(v) 

9(v3) =j 9(v) \ 9(v3.2) = v 9(Vl) = 9{v) 
eK-O = 9(v) 

Figure 3.13: The case n being even, v3-\ = v3 = v, v3+i = 9(v), and 9(v3-2) = v 

p$(v) = pe(w) = t. Then x € {t,9(t)}+, and hence pe{u) = p$(v). The case when 

VJ-IVJ — 9{v)v also leads to the same conclusion. 

Thus, when n is even, only the cases where Vj-iv., = vv or v3~\V3 = 9(v)9(v) 

remain unsolved yet. Moreover, using exactly the same technique, we can also prove 

that when n is odd, all we have to consider are the cases when v3v3+i = vv or 

v3v3+i = 9(v)9(v). Although we shall discuss only the case when n is even, a similar 

result can also be obtained for n odd. Assume that n is even, v3-\v3 — vv, and let 

v3 = v = xy such that y 6 Pref(9(v3-i)), as illustrated in Figure 3.13. Then we 

have x = 9(x) and y = 9{y). 

Next, we claim that once assuming v3^\v3 — vv, we only need to consider the 

case when V\V2 • • -vn — vn, that is, in all the other cases, we obtain pe(u) = pe(v). 

If j = n, then we are done. Otherwise, i.e., j < n, since j = (n + 2)/2 we have 

n > 2, and hence also j > 2. Thus we can also consider v3-2- Suppose first that 

v3+i = 9(v). If 9(v3-.2) — 9(v), then the nontrivial overlap between 9(v)2 and 9(v) 
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9(u) 

z VW> 

Figure 3.14: The case when n is even and v\ Vn = V. 

implies that p(y) — p(x) = p(9(v)), which, as shown earlier, leads to pe(u) = pe{v). 

Otherwise, let 9(v3-2) = v, as illustrated in Figure 3.13. Then, let v3+i — 9{v) = xy' 

for some y' € Pref(v), which implies that y' = 6(y'). Therefore, v — xy = y'x, 

which implies, due to Lemma 3.29, that v, x € {t}+ for some t € S + and hence 

pe{u) = p6(v). 

Now suppose that v]+i — v, and we consider #(u,_2). If j + 1 = n, then j — 2 = 1 

and thus v3-2 = v\ = v, i.e., v\V2.. .vn = vn. Otherwise, i.e., j + 1 < n, suppose 

0(i)j_2) = v. Moreover, since j + 1 < n, we can also consider vJ+2. But then, 

independently of whether uJ+2 is v or 9(v) we obtain pg(u) = pg(v). Repeating 

the whole process leaves only the case vJ+i = v3+2 = ... = vn = v and 6(v3-2) = 

9(v3-3) = ... = 9{vi) = 6(v) unsolved. That is, when we assume Vj-i^j = vv, all 

we have to consider is the case when v\v2 • • • vn = vn. On the other hand, if we 

start with the assumption that v3-\Vj = 9(v)2, then the only case remaining to be 

proved is when V\ = v and v2 = • • • = vn = 9(v); in all the other cases, using similar 

techniques as before, we obtain that p$(u) = p$(v). However, also in this case, 
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independently of whether vn+\ is v or 9(v), we can conclude that pg(u) = pg(v). 

Moreover, using similar arguments as above, if n is odd, then the only case which 

remains to be solved is u9(u) — vnv'. Therefore, independently of the parity of n, 

the only case we have to consider is when u9(u) = vnv'. 

Let us look first at the case when n is even. If v = xy, as illustrated in Figure 3.14, 

then u9(u) — vnv' — vn^2x9(v)n^2 with \v'\ = \x\. But, this actually means that 

v' = x since 9{v) = yx. Moreover, x can be written as x = 9(z)z for some z G S + . 

So, the prefix of 9{u) of length \v\ is zy9(z). Let vnvn+iv" = pref2|u|+|„|_1(/3(v, 0(i>))) 

with v" G Pref(v„+2), and vn+i = 9{z)zw for some w € S + . 

Firstly, we consider the case vn+\ = 9(v). Since 9(z) e Pref (vn+i), 9{z) is a prefix 

of both v and 9{v). Note that \v"\ = 2\z\ - 1 and hence 6(z) G Pref(w"). If |y| > \z\, 

then ^(z) G Pref(t/), i.e., 2 G Suff(y) because vn+i — y9{z)z and 9{z) G Pref(u„+i). 

In Figure 3.14, y and u" overlap with the overlapped part of length \z\ so z = 9{z). 

Then from the equation vn+i9(z) = 9[z)zzy = y9[z)z9{z) we derive z3?/ = yz3. This 

means that p(y) = ^(z), and thus p$(u) = pe(v). Otherwise, i.e., \y\ < \z\, we have 

zy = u;0(z). Then, z = wt and 9(z) — ty for some t G S + , which implies that 

w = y = 9(y). Hence #(?;) = y9{z)z = 9(z)zy, which implies, due to Theorem 3.18 

that pe(y) = pg(9(z)), and hence p9{u) = pg(v). 

Next we consider the case when un+1 — v. If vn+2 = v, then Theorem 3.8 imme­

diately implies that 9{u) and a conjugate of u, that is, zy9(z) share the primitive 

root t. Since 6>(u) = (zy9(z))]-1 z, z G {i}+ , and hence t = 9(t) and y,9(z) G {i}+ . 
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vn+i = v = 9{z)zy vn+2 = 0(v) = y9(z)z 

Figure 3.15: The case when n is even and |y| < \z\. 

Thus, u, v € {t}+, and hence pe{u) = pe{v). Otherwise let vn+2 = 9(v) = y9(z)z. 

Now, we have two subcases, depending on the lengths of y and z. Firstly, if \z\ < \y\, 

then pref|2|(u") G Pref(y), and hence zy € Pref(y2). Hence p(y) = p(z), implying 

that pe(u) = p$(v). Secondly, if \y\ < |z|, then since y £ Pref(z) we also have 

y € Suff(0(z)). Thus, pref|,|_1(6»(z)) G yPref(z), as illustrated in Figure 3.15. More­

over, since zy2 = y29(z), we actually have two distinct expressions over {y, z}+, 

one starting with y and the other with z, having a common prefix of length at 

least \y\ + \z\. Then, due to Corollary 3.5, we obtain p(y) = p(z), which implies 

Pe(u) = pe{v). 

Next we consider the case when n is odd and v\ — • • • = vn = v, see Figure 3.16. 

Let v = xy such that x = 9(x), y — 9(y), and y = 9{z)z for some x,y,z e S + . Then 

u9{u) = v^n-l^2x9(z)zx9(vYn-^2. 

If vn+i = ^(v), then a; is a prefix of both v and 9{v) and thus v" = pref^i.^x). 

Hence we have xzxzs — vn+iv" = 9{z)zxv" for some zs = prefi2i_1(^(z)). Depending 
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(f(v) 9{v) 

Figure 3.16: The case when n is odd and v\ = • • • = vn = v. 

on the lengths of x and z, we have the following four subcases. Let us consider 

the first subcase when |x| = \z\. Then immediately we have x = 9(z), and we are 

done, i.e., obviously p$(u) = p$(v). The second subcase is when \x\ > \z\. Then, 

xzxzs = 9(z)zxv" implies that x overlaps non-trivially with xv". Since v" G Pref (x) 

and x is ^-palindrome, we can write x — X\X2 = X2X\ for some ^-palindromes X\,X2, 

where, moreover xi = 9{z). This implies that x\,X2,x G {t}+ for some t G S + , and 

hence 0(z),z,x G {t, 9(t)}+. Since u,v € {9(z)1z,x}+, we have po(u) = pe{y). The 

third subcase is when \x\ < \z\ < 2\x\. Let 9(z) — xzv for some zv G Pref(2), which 

implies zv = 9(zp). Thus, z = zvx. Since xz G Pref (9(z)z), i.e., xzpx G Pref (xzpzpx) 

and \zp\ < \x\, we have zp G Pref(x). Now since 9{z)z G Pref(x2;x), we have 

9{z)z — xzpxzp, i.e., z = xzp. Therefore, z = xzp = zpx, which implies p(z) = p(x) 

and we obtain again pe(u) = pe(f)- The fourth subcase is when 2\x\ < \z\. As in the 

third subcase, 9{z) = xz'p for some ^-palindrome z'p. Since xzx G Pref(^(z)-z) holds 

in this case, let 9{z)z = xzxz's for some z's G Pref(0(z)). By substituting z = z'px 

into this equation, we obtain z = x2z's. Then z's — 9(z's). Hence, z = z'x = x2z's, 
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which implies, due to Lemma 3.30, that p{x) = p(z) and hence p$(u) = pe(v). 

Finally we consider the case vn+i — v — x9(z)z. Then, as illustrated in Fig­

ure 3.16, z = 9(z) and thus vn+\ — xz2. If vn+2 = v, then as above, we can 

employ Theorem 3.8 to conclude that pg(u) — p$[y). Otherwise, vn+2 = 0(v) = z2x. 

Now we have four subcases depending on the lengths of x and z. The first sub­

case is when \x\ < \z\. Note that z2 E Pre((zx9(z)). Hence z = xzs for some 

zs E Pref(0(,z)), which implies that zs — 9(zs). Since z = 9(z), z = xzs — zsx. 

This means p(x) — p(z) and we obtain again pg(u) — pe(v). The second subcase 

is when \z\ < \x\ < 2\z\. Since \v"\ — \x\ — 1 and v" is a prefix of vn+2 = z2x, we 

have that z G Pref(v"). Then, z3 E Pref(zx9(z)), and we can conclude p(x) = p(z) 

as done in the first subcase. Thus, p${u) = pe(v). The third subcase is when 

2\z\ < \x\ < 3\z\. Then, we actually have z2 E Pref(u"). Thus, zA E Pref(zx6(z)) 

and again we have p(x) = p(z), and hence pg(u) = p$(v). The last subcase is 

when 3|z| < \x\. Recall that vn+2 — z2x. Since x = 9(x), we can rewrite this as 

vn+2 = z29(x). As \v"\ = |x| — 1, this means that v" = z2X\ for some x\ E Pref {9(x)) 

satisfying \xi\ = \x\ — 2\z\ — 1, which is positive. Since zx E Prei(z2v"), there 

exists X2 E Pref(xi) such that zx = z4X2, i.e., X2 E Suff(a;). However, since 

X2 E Pref(^(x)), we obtain a;2 = 9{x2)- Thus, x = zzx2 = X2Z3, which implies, 

due to Lemma 3.29, that p(x) = p(z), so we conclude again that pe(u) — pe(v). D 

Example 8. Let 9 : {a, b}* —» {a, b}* be the mirror involution, u = a2ba3b, and 
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v = a2ba. Then, gcd(|w|, \v\) = 1, u3 and v29(v)2v have a common prefix of length 

2|u| + \v\ — 2, but p${u) ^ p$(v). 

Example 9. Let 9 : {a, b}* —» {a, b}* be the mirror involution, u — ba2baba, and 

v = ba2ba. Then, gcd(|u|, \v\) — 1, u9(u)2 and vA have a common prefix of length 

2\u\ + |u| - 2, but p0(«) ^ pe(v). 

Combining all results obtained in this section together, we have the extended 

Fine and Wilf theorem for an antimorphic involution 9: 

Corollary 3.32. Let u,v £ S* be two words with \u\ > \v\. If there exist two 9-

powers a(u, 9(u)) € u{u, 9(u)}* and f3(v, 9(v)) € v{v, 9(v)}* having a common prefix 

of length 2\u\ + \v\ — gcd(|«|, \v\), then pg(u) = pg(v). Furthermore, this bound is 

optimal. 

3.7 Conclusion 

In this paper, we extended the notion of primitive word, being motivated by encoding 

information into DNA molecules. Then we investigated various relations on words 

u,v (word equations, extended Fine and Wilf theorem) which imply pe(u) = pe(v). 

A future research topic is to generalize the extended Fine and Wilf theorem as being 

done for the original Fine and Wilf theorem (e.g., arbitrary number of periods, for 

partial words or bidimensional words). Another direction is to study relations on 

words which force some of the involved words to share their 0-primitive root (see [5]). 
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Chapter 4 

An extension of 
Lyndon-Schiitzenberger equation 

This chapter consists of the contents of "An extension of the Lyndon Schiitzenberger 

result to pseudoperiodic words"1, which is now under review of Information and 

Computation (as of August 13, 2010). 

Its earlier version was presented at 13th International Conference on Develop­

ments in Language Theory (DLT 2009): 

E. Czeizler, E. Czeizler, L. Kari, and S. Seki. 

An extension of the Lyndon Schiitzenberger result to pseudoperiodic words. 

In DLT 2009, volume 5583 of Lecture Notes in Computer Science, pages 183-194, 

Springer, 2009. 

Summary: One of the particularities of information encoded as DNA strands is that 

a string u contains basically the same information as its Watson-Crick complement, 

*A version of this chapter has been published. 
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denoted here as 6{u). Thus, any expression consisting of repetitions of u and 6{u) 

can be considered in some sense periodic. In this paper we give a generalization of 

Lyndon and Schiitzenberger's classical result about equations of the form ul = vnwm, 

to cases where both sides involve repetitions of words as well as their complements. 

Our main results show that, for such extended equations, if / > 5, n, m > 3, then 

all three words involved can be expressed in terms of a common word t and its 

complement 9(t). Moreover, if / > 5, then n = m = 3 is an optimal bound. These 

results are established based on a complete characterization of all possible overlaps 

between two expressions that involve only some word u and its complement 9(u), 

which is also obtained in this paper. 
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An Extension of the Lyndon Schiitzenberger 
Result to Pseudoperiodic Words 

Elena Czeizler1, Eugen Czeizler1, Lila Kari2, and Shinnosuke Seki2 

1 Department of IT, Abo Akademi University, Turku 20520, Finland. 
2 Department of Computer Science, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. 

4.1 Introduction 

Periodicity and primitiveness of words are fundamental properties in combinatorics 

on words and formal language theory. Their wide-ranging applications include 

pattern-matching algorithms (see, e.g., [3, 4]) and data-compression algorithms (see, 

e.g., [20]). Sometimes motivated by their applications, these classical notions have 

been modified or generalized in various ways. A representative example is the "weak 

periodicity" of [5] whereby a word is called weakly periodic if it consists of repeti­

tions of words with the same Parikh vector. This type of period was also called 

abelian period in [2]. Czeizler, Kari, and Seki have proposed the notion of pseudo-

primitiveness (and pseudoperiodicity) of words in [7], motivated by the properties 

of information encoded as DNA strands. 

DNA stores genetic information primarily in its single-stranded form as an ori­

ented chain made up of four kinds of nucleotides: adenine (A), cytosine (C), guanine 

(G), and thymine (T). Thus, a single-stranded DNA can be viewed as a word over the 

four-letter alphabet {A, C, G, T}. Due to the Watson-Crick complementarity property 
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of DNA strands, whereby A is complementary to T, and C is complementary to G, 

single-stranded DNA molecules interact with each other. Indeed, two Watson-Crick 

complementary DNA single strands with opposite orientation will bind to each other 

by weak hydrogen bonds between their individual bases and form the well-known 

DNA double helix structure. In the process of DNA replication, a DNA double 

strand is separated into its two constituent single strands, each of which serves as a 

template for the enzyme DNA polymerase. Starting from one end of a DNA single 

strand, DNA polymerase has the ability to build up, one nucleotide at a time, a 

new DNA strand that is perfectly complementary to the template, resulting in two 

copies of the DNA double strand. Thus, two DNA strands Watson-Crick comple­

mentary to each other can be considered "equivalent" in terms of the information 

they encode. 

The fact that one can consider a DNA strand and its Watson-Crick complement 

"equivalent" led to natural as well as theoretically interesting extensions of vari­

ous notions in combinatorics of words and formal language theory such as pseudo-

palindrome [8], pseudo-commutativity [13], as well as hairpin-free and bond-free 

languages (e.g., [12, 15, 19]). Watson-Crick complementarity has been modeled 

mathematically by an antimorphic involution 9, i.e., a function that is an antimor-

phism, 6{uv) = 9(v)9(u), Vu,v E £*, and an involution, 9(9(x)) = x, Vx € S*. 

The aforementioned new concepts and notions are based on extending the notion of 

identity between words to that of "equivalence" between a word u and 9(u), in the 
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sense that an occurence of 9{u) will be treated as another occurrence of u, albeit 

disguised by the application of 9. 

In [7], a word w is called 9-primitive if we cannot find any word x that is strictly 

shorter than w such that w can be written as a combination of x and 9{x). For 

instance, if 9 is the Watson-Crick complementarity then ATCG is ^-primitive, whereas 

TCGA is not because TCGA = TC0(TC). The periodicity theorem of Fine and Wilf -

one of the fundamental results on periodicity of words, see, e.g., [1] and [17] - was 

also extended as follows "For given words u and v, how long does a common prefix 

of a word in {u, 9(u)}+ and a word in {v, 9(v)}+ have to be, in order to imply that 

u,v € {t, 9(t)}+ for some word <?". 

In this paper, we continue the theoretical study of ^-primitive words by extending 

another central periodicity result, due to Lyndon and Schiitzenberger [18]. The 

original result states that, if the concatenation of two periodic words vn and wm can 

be expressed in terms of a third period u, i.e., ue — vnwm, for some £,m,n > 2, 

then all three words u, v, and w can be expressed in terms of a common word t, i.e., 

u,v,w G {t}+. (See also [10] and Chapter 5 from [17] for some of its shorter proofs 

and [11, 16] for some other generalizations.) Replacing identity of words by the 

weaker notion of "equivalence" between a word u and 9(u), for a given antimorphic 

involution 9, we define an extended Lyndon and Schiitzenberger equation as 

u\ • • • ue = v\ • • • vnwi • • • w, 



www.manaraa.com

104 

where u\,...,ut G {u, 9(u)}, Vi,...,vn G {v,9(v)}, and wi,...,wm G {w,9(w)} 

with £,n,m> 2. For this extended Lyndon and Schiitzenberger equation we ask the 

following question: "What conditions on £, n, ra, imply that all three words u, v, w 

can be written as a combination of a word and its image under 9, i.e., u,v,w G 

{t,9(t)}+ for some word £?". In this paper we give a partial positive answer and 

partial negative answer to this question. 

The positive answer states that whenever £ > 5, n, m > 3, the extended Lyndon-

Schiitzenberger equation implies u,v,w G {t, 9(t)}+ for some word t (Theorem 4.22). 

The negative answer states that once either n o r m becomes 2, we can construct 

u,v,w which satisfy the extended equation, but such a word t does not exist (Ex­

amples 10 and 11). Therefore, for any £ > 5, n = m = 3 is an optimal bound. In 

the case when £ = 3 or £ — 4, the problem of finding optimal bounds remains open, 

though the negative result holds even in these cases. Our proofs are not general­

izations of the methods used in the classical case, since one of the main properties 

used therein, i.e., the fact that the conjugate of a primitive word is still primitive, 

does not hold for 0-primitiveness any more. 

Prior to the proof of the positive result, we characterize all non-trivial overlaps 

between two expressions a(v,9(v)), j3(v,9(v)) G {v,9(v)}+ for a ^-primitive word v. 

Formally speaking, we show that the equality a(v,9(v)) • x — y • f3{v,9(v)) with x 

and y shorter than v is possible, and we provide all possible representations of the 

involved words v,x,y (Theorem 4.10). Note that this result is in contrast to the 
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classical case (where the two expressions involve only a word v, but not its image 

under 9). 

The paper is organized as follows. In Section 4.2, we fix our terminology and 

recall some known results. In Section 4.3, we provide the characterization of all 

possible overlaps of the form a(v, 9{v))-x = y-(3(v,9(v)) with a(v, 0(v)),/3(v, 9(v)) G 

{v, 9(v)}+ and x, y shorter than v. Finally, in Section 4.4 we provide our extension 

of Lyndon and Schiitzenberger's result. 

4.2 Preliminaries 

Here we introduce notions and notation used in the following sections. For details 

of each, readers are referred to [1, 17]. 

Let E be a finite alphabet. We denote by E* the set of all finite words over E, by 

A the empty word, and by E + the set of all nonempty finite words. The catenation 

of two words u, v G E* is denoted by either uv or u • v. The length of a word w G E*, 

denoted by \w\, is the number of letters occurring in it. We say that u is a factor 

(a prefix, a suffix) of v if v = tiut2 (resp. v = ut2, v = t\u) for some ti,t2 G E*. 

We denote by Pref(v) (resp. Suff(t>)) the set of all prefixes (resp. suffixes) of the 

word v. We say that two words u and v overlap if ux = yv for some x, y G E* with 

\x\ < \v\. An integer p > 1 is a period of a word w = a,\... an, with ax G E for all 

1 < % < n, if a, = al+p for all 1 < i < n — p. 



www.manaraa.com

106 

A word w G E+ is called primitive if it cannot be written as a power of another 

word; that is, if w — un then n = 1 and w = u. For a word w G E+ , the shortest 

u G E+ such that w — un for some n > 1 is called the primitive root of the word w 

and is denoted by p(w). It is well-known that two words u, v commute, i.e., uv — vu 

if and only if u, v have the same primitive root. This is rephrased as the following 

proposition. 

Proposition 4.1. Let u € E+ be a primitive word. If u2 = xuy, then either x — A 

or y = A. 

A mapping 0 : E* —> E* is called an antimorphism if for any words u, v € E*, 

9(uv) = 9{v)9(u). A mapping 9 : E* —>• E* is called an involution if92 is the identity. 

As mentioned in the introduction, an antimorphic involution is a mathematical 

formalization of the Watson-Crick complementarity. Throughout this paper we will 

assume that 9 is an antimorphic involution on a given alphabet E. A word w € E* 

is called a 9-palindrome, or a pseudo-palindrome if 9 is not specified, if w = 9(w) 

(see [14] and [8]). 

The notions of periodic and primitive words were extended in [7] in the following 

way. A word w € E+ is ^-periodic if w = W\... Wk for some k > 2 and words 

t,wi,...,Wk G S + such that Wi G {t, 9{t)} for all 1 < i < k. Following [8], in 

less precise terms, a word which is ^-periodic with respect to a given but unspecified 

involutory morphism 9 will be also called pseudoperiodic. The word t in the definition 
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of a ^-periodic word w is called a ^-period of w. We call a word t o £ E + 9-primitive 

if it is not ^-periodic. The set of ^-primitive words is strictly included in the set of 

primitive ones, see [7]; for instance, if we take a ^ b and 6(a) = b, 6(b) = a, then 

the word ab is primitive, but not ^-primitive. We define the 6-primitive root of w, 

denoted by po(w), as the shortest word t such that w = Wi... Wk for some k > 1, 

Wi G {t, 6(t)} for all 1 < i < k, and W\ = t. Note that if w is ^-primitive, then 

ps(w) = w. 

The Fine and Wilf theorem, originally formulated for sequences of real numbers 

in [9], illustrates another fundamental periodicity property in its form for words 

[1, 17]. It states that for two words «, v £ S*, if a power of u and a power of v 

have a common prefix of length at least |u| + \v\ — gcd(|u|, \v\), then u and v are 

powers of a common word, where gcd(,) denotes the greatest common divisor of two 

arguments. Moreover, the bound \u\ + \v\ — gcd(|w|, \v\) is optimal. 

This theorem was extended in [7] for the case when instead of powers of two 

words u and v, we look at expressions over {u, 6(u)} and {v, 6(v)}, respectively. 

The extended theorem consists of the following two variants. 

Theorem 4.2 ([7]). Let u, v € S + be two distinct words with \u\ > \v\. If there 

exist two expressions a(u,6(u)) £ u{u,6(u)}* and f3(v,9(v)) G v{v,6(v)}* having 

a common prefix of length at least 2\u\ + \v\ — gcd(\u\, \v\), then pe(u) — pe(v)-

Moreover, the bound 2\u\ + \v\ — gcd(\u\, \v\) is optimal. 
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Theorem 4.3 ([7]). Let u,v G E + , a(u,6{u)) G u{u, 9{u)}*, and P(v,6(v)) G 

v{v, 9(v)}* such that a(u, 9(u)) — /5(w, 9(v)). Then pe(u) = pe(v). 

The next two results, also from [7], will be very useful in our considerations. 

Lemma 4.4 ([7]). For u,v G £*, «/ww = 9(uv) and vu = 9{vu), then there exists a 

word t G E + suc/i i/mi u , o e {£, #(£)}*• 

Lemma 4.5 ([7]). Ze£ u G S + be a 9-primitive word. Then, 9{v)vx = yv9(v) for 

some words x,y G S* with \x\, \y\ < \v\, if and only if v — 9(v) and x = y = A. 

Similarly, v9(v)v — xv2y for some x, y G S* «/ and on/y «/ v = 0(i>) and either x = A 

or y = A. 

The following result will prove very useful in our future considerations. 

Lemma 4.6. Let « 6 S + such that u = xz — zy for some x,y,z G S + wi/i a; = 0(:r) 

and y = 9(y). Then x, y, z,u G {i, 9(t)}* for some t G E + . 

Proof. The equation u = xz = zy implies that a: = pg, y = gp, and z = (pqYp for 

some p , 5 G S" and j > 0. Since x = 0(x) and y — 9(y), we have pq = 9{pq) and 

<7P = 9(qp). Then, Lemma 4.4 implies that there exists a word t G E + such that 

p,q€{t,d(t)}*. D 

When considering word equations that involve the antimorphic involution like 

those in the previous lemmas, one often encounters the 0-commutativity of words. 

A word u is said to 9-commute with a word v if uv = 9(v)u [13]. This is a special 
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case of the conjugacy of words ux = yu. The solution to this equation is given as: 

u = (pq)lp, x = (qp)3, and y = (pq)3 for some i > 0, j > 1 and p ,gGS* such that 

pq is primitive. Note that if we give up the primitivity of pq, then we can assume 

j = 1. Thus, we can characterize the solution to the 0-commutativity of words as 

follows. 

Proposition 4.7 ([13]). For words u,v G S + and an antimorphic involution 9, 

if uv — 9(v)u holds, then u = (rt)%r and v = (tr)3 for some i > 0, j > \, and 

8-palindromes r, t G E* such that rt is primitive. 

4.3 Overlaps between ^-Primitive Words 

It is well known that a primitive word v cannot occur nontrivially inside v2, see 

Proposition 4.1. Thus, two expressions v% and v3, with i,j > 1, cannot overlap 

nontrivially on a sequence longer than |i>|. A natural question is whether we can have 

some nontrivial overlaps between two expressions a(v, 9(v)),{3(v, 0(v)) e {v, 9(v)}+, 

when v € S + is a ^-primitive word. In this section we completely characterize 

all such nontrivial overlaps, and, moreover, in each case we also give the set of all 

solutions of the corresponding equation. 

We begin our analysis by giving two intermediate results. 

Theorem 4.8. Let v € E+ be a 9-primitive word and a(v,9(v)), [3(v, 0(v)) G 

{v,9(v)}+ such that a(v, 9(v))-x — y-P(v, 9{v)), with x, y G E +
; \x\, \y\ < \v\. Then, 
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v2 and 9{v)2 cannot occur simultaneously neither in a(v,9(v)) nor in f3(v,9(v)). 

Proof. Suppose that both v2 and 9{v)2 occur in a(v, 9(v)); the case when they both 

occur in /3(u, 9(v)) is symmetric. Moreover, since 9 is an involution, we can suppose 

without loss of generality that v2 occurs before 9(v)2, thus implying that v29(v) is 

a factor in a(v,9(v)). Since v (resp. 9(v)) is primitive, the border between any two 

consecutive v's (resp. 0(v)'s) falls inside a 9(v) (resp. v), see Figure 4.1. 

v v 9(v) 
1 1 1 — 1 

^ ' v2 or v9(v) or 9(v)v 

Figure 4.1: The case when v29(v) is a factor in a(v, 9(v)) 

Thus, v29(v) overlaps either with 9(v)v2 or with 9(v)v6(v) or with 9(v)2v. In 

all three cases the nontrivial overlap between v9(v) and 9(v)v contradicts the 9-

primitivity of t>, see Lemma 4.5. D 

Theorem 4.9. For a 9-primitive word v £ S + , let a(v, 9(v)), fi(v, 9(v)) G {v, 9(v)}+ 

such that a(v,9(v)) • x = y • f3{y, 9(v)) for some x,y G E+ with \x\, \y\ < \v\. Then, 

for any i > 1, neither v9{v)%v nor 9{v)vl9{v) can occur either in a(v,9(v)) or in 

P(v,9(v)). 

Proof. Suppose that v9(v)lv occurs in a(v,9(v)) for some i > 1. We assumed 

that x,y G S + and \x\, \y\ < \v\ so that the factor v9(v)lv contains as a proper 

factor j(v,9(v)) G {v,9(v)}t+1, i.e., there exist some p,q £Y,+ such that v9{v)%v = 
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Table 4.1: Characterization of possible proper overlaps of the form a(v, 9{v)) • x = 
y • (3(v,9(v)). For the second and third equations, p, q G S + . For the last three 
equations, i > 0, j > 1, r, t € S + such that r = 0(r), £ = 9(t), and r£ is primitive. 
Note that the 4th and 5th equations are the same up to the antimorphic involution 
9 

Equation 
vkx = y9(v)k,k > 1 

v x = yv 
v9(v)x = yv9(v), 

vk+lx = y9(v)kv,k > 1 
v9(v)kx = yvk+1, k > 1 
v9{v)lx = yv^iv), i > 2 

Solution 
v = yp,x = 9{y),p = 9(p), 
and whenever k > 2, y — 9{y) 
v — (pq)l+1p, x = qp, y = pq, with i > 0 
v = (pq)l+1p, x = 9(pq), y = pq, with i > 0, qp — 9{qp) 

v = r(trY+^r(tr)1, x = (tr)jr(tr)\ y — r(tr)l+:> 
v = (rtyr(rt)j+lr, y = (rt)V(ri)-7, x — (rt)j+lr 
v = (rt)nr(rt)m+nr, y = (rt)nr(rt)m, x = {tr)mr(tr)n 

pj(v, 9(v))q. Due to Lemma 4.5 and 9(v) being primitive, j(v, 9[v)) = vl+1. Now we 

have v9(v)lv = pvz+1q and hence v9(v)v = pv2q. However, this contradicts Lemma 

4.5. The other cases can be proved similarly. • 

As an immediate consequence of the previous two theorems, for a given 9-

primitive word v, if a(v,9(v)) • x = y • (3(v,9(v)) with x,y G E + , |x|, \y\ < \v\, 

then a(v,6(v)) and f3(v,9(v)) can be only of the following types vk, vk9(v), v9(v)k, 

9(v)k, 9(v)kv, or 9(v)vk for some k > 1. The next result refines this characterization 

further. 

Theorem 4.10. Let v £ S + be a 9-primitive word. Then, the only possible proper 

overlaps of the form a(v,9(v)) • x = y • f3(v,9(v)) with a(v, 9(v)), (3(v,9(v)) G 

{v,9(v)}+, x,y E S + and \x\,\y\ < \v\ are given in Table 4-1 (modulo a substi-
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tution of v by 9(v)) together with the characterization of their sets of solutions. 

Proof. Since 9 is an involution, we can assume without loss of generality that 

a(v,9(v)) starts with v. Then, due to the previous observation we know that 

a(v,9(v)) e {vk,vk9(v),v9(v)k \ k > 1}. 

V V • • • V V X 

, j gfa) \9(y)\ j OM ''>m\ , 
y 0(v) • • • 6{v) v or 9{v) 

Figure 4.2: The case when a(v,9(v)) = v% 

Case 1: First we consider the case when a(v,9(v)) = vk for some k > 1. Since 

v is ^-primitive, vhx = y(3(v,9(v)), and \y\, \x\ < \v\, the border between any two 

consecutive u's falls inside a 9(v), see Figure 4.2; otherwise v would occur inside v2 

which would contradict its primitivity. Thus, j3(v,9(v)) £ {9(v)k,9(v)k~1v}. Then, 

we can write v = yvi, that is, 9(v) = 9(vi)9(y). 

Suppose first that /3(v,9(v)) — 9(v)k. Then, we immediately obtain v\ = 9{v\) 

and in addition, if i > 2, then y = 9(y). Moreover, if we look at the end of the two 

sides of the equation vkx = y9(v)k, we also obtain that x = 9{y). Thus, a proper 

overlap of the form vkx = y9{v)k with v being ^-primitive is possible, and, moreover, 

the set of all solutions of this equation is characterized by the following formulas: 

v = yvi and x = 9(y), where Vi — 9{v\) and y = 9{y) whenever k > 2. 

Suppose now that fi(v, 9{v)) = 9(v)k~1v. If we look at the end of the two sides of 

the equation, then we obtain v = V\x. Thus, v — yv\ = V\X. This conjugacy implies 
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that there exist some p, q € E* and n > 0 such that y = pq, x = qp, V\ — (pq)np, 

and v = (pq)n+1p. If q is empty, then v — pn+2 which contradicts the primitivity 

of v. If p is empty, then v = qn+l which either contradicts the primitivity of v or, 

when n = 0, implies that v = y contradicting our assumption that \y\ < \v\. Thus, 

p, q have to be nonempty. The set of all solutions of this equation with k — 1 is 

characterized by v = (pq)n+1p, x = qp, y — pq, and n > 0. Now, if k > 2, then 

vi = 0(vi) and y = 9{y), i.e., p = 9(p) and pq — 6{pq) — 6{q)p. If n > 1, then also 

g = 0(q), which contradicts the primitivity of v. Thus, if k > 2, then n has to be 

0. Due to Proposition 4.7, the 0-commutativity pq = 9(q)p implies p — r(tr)z and 

q = (tr)J for i > 0, j > 1, and two ^-palindromes r, i such that rt is primitive. In 

fact, r and £ must be non-empty. Recall that v — pqp = r(trY+Jr(tr)1. If t were 

empty, then v — r2l+]+2 and would not be even primitive, a contradiction. Even if 

r were empty, unless i — 0 and j = 1, we reach the same contradiction; if i = 0 

and j = 1, then y — v, which contradicts the assumption \y\ < \v\. To conclude, 

a proper overlap of the form vkx — y6{v)k~lv with v being ^-primitive and k > 2 

is also possible. The set of all solutions of this equation is characterized by the 

following formulas: v — r(tr)l+3r{tr)%, x = (tryr^tr)1, and y = r(ir) l + J . 

v v • • v 0(v) or 
i 1 1 1 1 — 1 1 

y % ) ' 0(y) ^ ^ j ' v v or 9{v) 

Figure 4.3: The case when a(v,0(v)) = vl9{v) and f3(v,9(v)) begins with 9(v)t~1v 
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Case 2: Suppose now that a(v,9(v)) — vk9(v) for some k > 1. If k > 2, then 

P(v,9(v)) has to start with 9(v)k~1 because otherwise it would contradict the prim-

itivity of v. If this 9(v)k~1 is followed by v, see Figure 4.3, then v9(v) overlaps with 

9(v)v with the overlap properly longer than v. Then Lemma 4.5 leads to a contradic­

tion. Hence, /3(v,9(v)) starts with 9(v)k, see Figure 4.4. Then, however, P{v,9(v)) 

can end neither with v due to Lemma 4.5, nor with 9(v) due to Proposition 4.1. 

v v ••• v 0(v) x 
i 1 1 1 1 1 1 

V 0{y) ' 9{v) ^ 6(v) ' 0(v) v or 6{v) 

Figure 4.4: The case when a(v, 9(v)) = vl9{v) and fi(v, 9(v)) begins with 9{v)% 

Thus k has to be 1. Proposition 4.1 and Lemma 4.5 imply that f3(v, 9(v)) starts 

with v. Firstly we consider the case when (3(v, 9(v)) = v2, that is, we have v9(v)x = 

yv2 (see Figure 4.5 left). Note that for any x, y £ S + with |x|, \y\ < \v\, v9(v)x = yv2 

holds if and only if v9(v)kx = yvk+1 holds for any k > 1. Furthermore, the latter 

equation is the same as the equation vk+lx' = y'9(v)kv, which was considered in 

Case 1, up to the antimorphic involution 9. Using the result obtained in Case 1, we 

have that the set of all solutions of v9(v)kx = yvh+1 is characterized by the formulae 

v — (ri)V(ri)J+V, x = (rt)3+lr, and y = (ri)V(ri)-7. 

The remaining case for a(v,9(v)) = v9(v) is when P(v,9(v)) = v9(v), see Fig­

ure 4.5 right. Then, we can write v — yv\ = v\Vi and we obtain immediately 

x — 9{y) and v2 = #(^2)- Thus, a proper overlap of the form v9(v)x — yv9(v), with 
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v 9(v) x v 9(v) x 
1 y \ vi \0(v2)\ 0{Vl) ! ' ' y : »i ! % 2 ) ; <i(Ul) ! ' 

, i_Hl ; ^ j " i i ^ | i J * i • "2 I flfa) \0(y)l 

y v v y v 9{v) 

Figure 4.5: The equations: v9(v)x = yv2 and v9(v)x — yv9(v) 

v being ^-primitive, is possible. Furthermore, the set of all solutions of this equation 

is characterized by the following formulas: v — (pq)z+1p, y = pq, x — 9(pq) for some 

i > 0 and p, q G E* such that qp — 9(qp). We can easily check that p, q have to be 

non-empty as done previously. 

v 8{v) ••• 9{v) 9{v) x 
1 y : «i !6i(«2): #K) ' ' : JAM; tfM | ' 
, | ^1 '< V2 j V\ ( \ V\ i V2 | I | 

J/ w w • • • v v or #(w) 

Figure 4.6: The case when a(v, 9{v)) = v9{v)% and /?(u, #(v)) starts with i> 

Case 3: Finally we consider the case when a(v, 9(v)) = v9(v)k for some A; > 2; the 

case when k = 1 was already considered. Since 0(v) is primitive, the border between 

any two 0(f)'s falls inside v. If /3(v,0(v)) starts with #(?;), then this 9(v) could not 

be followed by either v due to Lemma 4.5 or 9(v) due to Proposition 4.1. Therefore 

/3(v, 9(v)) has to begin with v, and moreover /3(v, 9(v)) G vk{v, 9(v)}, see Figure 4.6. 

Actually it suffices to consider the case /3(v,9(v)) = vk9(v) because the other was 

already addressed in Case 2. In this case, x = 9(y). Since v9(v) G Pref(yi>2) and 

\y\ < \v\, we have v = yv\ = v\v2 for some V\,v2 G S + with t^ = 9(vi) and w2 = 

#(v2)- As seen in Case 1, this equation implies y = 9{x) = (rt)lr{rty, vi = (ri)V, 
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and v2 = (rt)l+Jr for some i > 0, j > 1, and two nonempty ^-palindromes r, t such 

that rt is primitive. • 

4.4 An Extension of Lyndon and Schutzenberger's 

Result 

As an application of the obtained characterization of non-trivial overlaps, now we 

consider the extended Lyndon-Schutzenberger equation. Let us recall first the orig­

inal result by Lyndon and Schutzenberger [18]. 

Theorem 4.11. / / words u,v,w satisfy the relation ul — vnwm for some positive 

integers £,n,m> 2, then they are all powers of a common word, i.e., there exists a 

word t such that u,v,w G {£}*• 

Let us extend the equation as follows: for u, t>, w € E + and £,n,m > 2, 

ui---ue = vi---vnwi---wm, (4.1) 

where ui,..., ut € {u, 9(u)}, vi,...,vn £ {v, 9(v)}, and w\,..., wm G {w, 9(w)}. 

We call Eq. (4.1) the extended Lyndon-Schutzenberger equation (abbreviated as exLS 

equation). 

In light of Theorem 4.11, we ask the question of under what conditions on £, n, m, 

the exLS equation implies that u,v,w € {t, 0(t)}+ for some word t € S + . If such t 
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exists, we say that the triple (£, n, m) imposes 9-periodicity on u, v, w, (or shortly, 

imposes 9-periodicity). Furthermore, we say that the triple (£,n,m) imposes 9-

periodicity if it imposes ^-periodicity on all u, v, w. Note that, if (£, n, m) imposes 

^-periodicity, then so does (£,m,n), and vice versa. Note also that the fact that a 

certain triple (£, n, m) imposes ^-periodicity does not imply that (£', n', m') imposes 

^-periodicity for £' > £ or n' > n or m' > m. 

The results of this section are summarized in Table 4.2. Overall, combining 

all the results from this section we obtain that £ > 5 , n > 3 , m > 3 imposes 9-

periodicity on u, v, and w (Theorem 4.22). In contrast, for £ > 3, once either n = 2 

or m = 2, (£,n,m) does not always impose ^-periodicity, see Examples 10 and 11. 

Therefore, when £ > 5, (£, 3, 3) is the optimal bound. In the case when £ = 2, £ = 3, 

or £ = 4, the problem of finding optimal bounds is still open. 

Table 4.2: Result summary for the extended Lyndon-Schiitzenberger equation. 
£ n m 

> 6 > 3 > 3 
5 > 5 > 5 
5 4 > 4 
5 3 > 3 

> 3 2 > 1 

^-periodicity 
YES 
YES 
YES 
YES 

NO 

Theorem 4.12 
Theorem 4.13 
Theorem 4.20 
Theorem 4.21 

Examples 10 and 11 

Example 10. Let S = {a, b} and 9 : S* —> S* be the mirror image denned as 9(a) = a, 

0(6) = b, and 9(w\... wn) = wn ... Wi, where Wi € {a, b} for all 1 < i < n. Take now 

u = akb2a2k, v = 9(u)la2kb2 — (a2hb2ak)la2hb2, and w = a2, for some k, I > 1. Then, 
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although 0(u)l+1ul+1 = v2wk, there is no word t G E+ with u,v,w G {£, #(£)}+, i.e., 

for any k,l > 1, the triple of numerical parameters (21 + 2,2, k) is not enough to 

impose ^-periodicity. 

Example 11. Consider again S = {a, b} and 9 : S* —> S* be the mirror image 

defined in the previous example and take u = b2(aba)k, v — ulb — {b2(aba)k)lb, and 

w = aba for some k, I > 1. Then, although u2(+1 = v9(v)wk, there is no word t G S + 

with u,v,w G {i, #(£)}+, i.e., for any A;, / > 1, (2/ + 1, 2, A:) is not enough to impose 

^-periodicity. 

In the rest of this section, we handle the cases when [£, n, m) imposes ^-periodicity. 

Among them, we firstly consider some cases where enough amount of repetition is 

available for us to apply the extended Fine and Wilf's theorem (Theorem 4.2). The 

next two results analyze the cases when we have triples (£,n,m) with £ > 6 and 

n, m > 3 and respectively (5, n, m) with n,m > 5. 

Theorem 4.12. Let u,v,w G S +
; n, m > 3, £ > 6, uz G {u, 9(u)} for 1 < i < £, 

Vj G {v, 9(v)} for 1 < j < n, and Wk G {w, 9(w)} for 1 < k < m. If u\.. .ui = 

V\... vn Wi... wm, then there exists a word t G E+ such that u,v,w G {t, 9(t)}+. 

Proof. Let us suppose that \vi... vn\ > \wi... wm\; the other case is symmetric and 

can be solved similarly. Then, \vi... vn\ > | | i t i . . . itj| > 3|«|, since £ > 6. Since n > 

3, this means that u\... ug and V\... vn share a common prefix of length larger than 

both 3\u\ and Z\v\. Thus, we can apply Theorem 4.2 to obtain that « ,»£ {t, 9{t)}+ 
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for some ^-primitive word t E S + . Moreover, since Ui. . . ug — Vi... vn W\ ... wm, 

this implies W\... wm E {t, 9(t)}*. Since t is ^-primitive, Theorem 4.3 implies that 

also w e {t,9(t)}+. • 

This proof clarifies one important point: in order to prove that (£, n, m) imposes 

^-periodicity, it suffices to prove that two of u, v, w are in {£, 9(t)}+ for some t. 

Theorem 4.13. Let u,v,w E S + , n, m > 5, u% E {u, 0(u)} for 1 < i < 5, v3 E 

{v,9(v)} for 1 < j < n, and Wk E {w, 0(w)} for 1 < k < m. If u\ 1*2̂ 3̂ 4̂ 5 = 

V\... vn i«i . . . wm, then there exists a word t E S + such that u,v,w E {t, 9(t)}+. 

Proof. Since M1U2W3W4U5 = v\... vn w\... wm and n, m > 5, we immediately obtain 

that \u\ > \v\ and |it| > \w\. Assume now that n\v\ > m\w\; the other case is 

symmetric. Thus, n\v\ > 2\u\ + | |u | and we take n\v\ = 2|n| +1 for some I > \\u\. 

We claim now that / > \v\. HI > \u\, then we are done since we already know 

that |u| > \v\. So, let | |u | < / < \u\. If n > 6, then n\v\ = 2\u\ + I < 3\u\ and 

thus \v\ < | |u | < I. Thus, the only case remaining now is when n — 5. Then, 

5\v\ = 2\u\ + I > 2\u\ + ||w|, which implies \v\ > | |u | . But then we have that 

4\v\ > 2\u\ while 5\v\ = 2\u\ + /. Hence, also in this case we obtain \v\ < I. 

Thus, U1U2U3U4U5 and V\... vn have a common prefix of length n\v\ = 2\u\ + / > 

2\u\ + \v\. This means, due to Theorem 4.2, that there exists a ^-primitive word 

( £ E+ such that u, v E {t, 9(t)}+. As mentioned previously, now we can also say 

that WE {t,9(t)}+. • 
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The triple (5, n, m) also turns out to impose ^-periodicity for any n > 4 and 

m> 7. 

Theorem 4.14. Let u,v,w £ T,+, n > A, m > 7, u% G {it, 0(u)} for 1 < % < 5, 

Vj € {v,9(v)} for 1 < j < n, and wk £ {w,9(w)} for 1 < k < m. If uiU2UsUiU5 = 

v\... vn w\... wm, then there exists a word t £ E+ such that u,v,w € {t, 9(t)}+. 

Proof. Unless the border between vn and w\ falls inside ix3, Theorem 4.2 concludes 

the existence of such t. So, assume that the border falls inside u^. Even under this 

assumption, if the border between u2 and u^ falls inside some v% except vn, then 

Theorem 4.2 leads us to the same conclusion. Otherwise, we have that (n — l)\v\ < 

2\u\, which means \v\ < ~i\u\ < ||w|. Similarly, if the border between u^ and u^ 

does not fall inside w\, we reach the existence of such t: otherwise Itul < — r̂lttl < 

| |« | . Under the condition that vn and w\ straddle these respective borders, the 

equation cannot hold because v and w are too short. • 

We already know from Example 11 that for any m > 1, the triple (5, 2, m) is not 

enough to impose ^-periodicity. So, we investigate next what would be the optimal 

bound for the extension of the Lyndon and Schiitzenberger result when the first 

parameter is 5. Note that, without loss of generality, we can assume n < m. Then, 

due to Theorem 4.13, all we have to investigate are the cases (5,3, m) for m > 3 

and (5,4, m) for m > 4. The next intermediate lemma will be useful in the analysis 

of these cases. 
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Lemma 4.15. Let u G S + such that u — xy and y G Pref(w) for some 6-palindrome 

words x, y G E + . / / \y\ > \x\, then p(x) — p(y) = p{u). 

Proof. We have u — xy — yz for some z G S + of the same length as x. The length 

condition implies that x G Pref(y). Since x = 9(x) and y — 9(y), this means that 

x G Suff (y) and hence z = x. So we have u — xy = yx, and hence x, y, and u share 

their primitive root. • 

Unlike in the case of the original Lyndon-Schiitzenberger equation, the investi­

gation of our extension entails the consideration of an enormous amount of cases 

since for each variable Ui, v}, Wk we have two possible values. However, in almost all 

cases, it is enough to consider the common prefix between u\... U( and v\... vn or 

the common suffix between u\.. .ui and w\... wm to prove that either the equation 

imposes ^-periodicity or the equation cannot hold. 

Note that for the (5,3, m) or (5,4, m) extensions of the Lyndon-Schiitzenber­

ger equation, we only have to consider the case when the border between vn and 

Wi is inside u^ because otherwise Theorem 4.2 immediately implies that u,v,w G 

{t, 0{t)}+ for some word t G E + . Also even if the border is inside ii3, if m\w\ > 

2\u\ + \w\, then we reach the same conclusion. Moreover, we can assume that w 

is ^-primitive since otherwise we would just increase the value of the parameter 

m. These observations justify the assumptions which will be made in the following 

propositions. 
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P r o p o s i t i o n 4.16. Let u, v G S + such that v is a 9-primitive word, ui, 112,11,3 G 

{u, 9{u)}, and w1? • • • ,v2m+i G {i>,0(w)} /or some m > 1. If vi- • -t^m+i *s « proper 

prefix ofu\U2Uz and2m\v\ < 2\u\ < (2m + l)\v\, thenu2 ^ u\ andv\ — ••• = r^m+i-

Moreover, v\ = j/p and Uiu2 = (yp)2my for some y,p G E* suc/i £/m£ y = 9{y) and 

p = 9(p). 

Proof. Since 9 is an involution, we may assume without loss of generality that Ui — u 

and v\ = v. Note that \v\ < \u\ and, due to the length condition, the border between 

u\ and «2 falls inside vm+i while the one between u2 and 1*3 falls inside «2m+i- Now, 

we have two cases depending on whether u2 is equal to U\. 

Case 1: Suppose first that u2 ^ «i , i.e., u2 = 0(u)- Since W1U2 = u9(u) is a 0-

palindrome, Vi • • •V2m G Pref(wi«2) implies 9(v2m) • • -9(vi) G Suff(MiU2)- Applying 

Theorem 4.10 to the overlap between v\ • • • V2m and 9(v2m) • • • 9(vi) gives the follow­

ing subcases: a) vi — • • • — i>2m = v, and b) v\ = v, v2 — • • • = v2m = 9(v). For case 

b), because of the 0-primitivity of v, applying Theorem 4.10 to the overlap between 

v2mv2m+i a n d 9(v2)9(v\) implies that «2m+i can be neither v nor 9(v). Thus, this 

subcase is not possible. 

Next, we consider the subcase a), and prove that i>2m+i must be v. Suppose 

otherwise, i.e., v2m+i = 9(v), and we analyze two cases depending on whether ^3 is 

u or 9(u). If U3 = u, then V2mV2m+i = v9(v) overlaps with 9(vi)vi = 9(v)v because 

v\ G Pref(u), which contradicts Theorem 4.10. Otherwise, i.e., U3 = 9(u), we look 

at the overlap between vm+i — v and 9(vm+i) — 9(v). Note that this overlap is a 
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^-palindrome and, moreover, since the border between ui and u2 cuts this overlap 

exactly in half, see Figure 4.7, we can say it is of the form z8(z) for some z € S + . 

Then v = z9{z)y for some 0-palindrome word y. Note that, due to length constraints, 

z9(z) € Pref(i>2m+i) and 9{v) = yz9{z). If |z0(z)| > \y\, then Lemma 4.15 implies 

that p(z9(z)) = p(y), which contradicts the #-primitivity of v. Otherwise, since 

|z0(z)| < \y\ we have z £ Pref(y), and hence 9{z) € Suff(y). So, if we look at the 

border between u2 and u^, then yz9(z)2 = z9(z)2y. Thus p(y) = p(z9(z)2), and 

hence y, z G {t, 9(t)}+ for some t € S + , again a contradiction with the 0-primitivity 

of v. 

u A(«) 9{u) 

v vm+i = v v2m+i = 9{v) 
I—- -=H I - — i ~= 

\z9{z)\ y 
- H = 

y 

Z9{ZWZ) ~ y 
(̂3R 

9(vm+l) = 6I(T;) 0(U) 0(U) 

Figure 4.7: wm+i overlaps with 9{vm+i) and the overlap is split exactly in half by 
the border between u\ and it2. 

In conclusion, if u\ ^ u2, then v\ — • • • = i>2m+i must hold. Theorem 4.10 gives 

the expressions of v and u9(u) based on two 0-palindromes y and p. 

Case 2: Now suppose that u2 — u\ = u, and we see that a contradiction occurs 

for all possible cases. If we look at the overlap between v\ • • -vm and wm+i • • •V2m, 

then we see that all cases from Theorem 4.10 are possible. 

Firstly we consider the subcase a) when v\ = • • • = vm = v and vm+\ — • • • = 

V2m = 8(v), which is illustrated in Figure 4.8. As mentioned before, the border 
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between u\ and u2 falls inside vm+\, and hence in this case U\ — vmz for some 

z G Pref(vm+i); moreover \z\ < | |u | since 2\u\ < (2m + l)\v\. Then, we can write 

vm+1 = 9(v) = zy for some y G E+ with y = 0(y), see Figure 4.8. Moreover, using 

length arguments, we have that the right end of u2 falls inside v2m+i after exactly 

2121 characters. Since u = vmz and 9(z) G Suff(w), we obtain 9(z)z G Pref(v2m+i)-

Also, since (?(i>) = zy and |z| < \\v\, we have |y| > \z\. 

i i £ 

5(«) I ; y fl(*1 
| y \ ; | z y 
VX=V Vm = V Vm+l 

Figure 4.8: V\... vm and vm+\... v2m overlap. Note that unless u3 = u, we cannot 
assume that vm+\ overlaps with v2m+\. 

If u3 = u, then vmvm+1 = v9(v) and v2mv2m+l = 9(v)v2m+i overlap. So, due 

to Theorem 4.10, v2m+i must be 9(v). So z = 9(z), and hence 9(v) = zy and 

y G Pref(wTO+i), i.e., y G Pref(0(u)). Then, since \y\ > \z\, Lemma 4.15 implies 

p(y) — Piz)i which contradicts the 5-primitivity of v. 

If u$ = 9(u), then we consider two cases depending on the value of v2m+i. First, 

suppose that v2m+i — v- Since 9(z)z G Suff(u), we have 9(z)z G Pref(ua) and we 

have two cases depending on \v\ and 2|0(z),z| = 4\z\. If \v\ < 4\z\, then v2m+i = v — 

9(z)zx for some x G Pref(0(z)z). Since |y| = \x\ + \z\ and y,9(z)z G Pref(v), we 

have x G Pref(y) and z G Suff(y), which means y — xz. Thus, we have v — 9(z)zx — 



www.manaraa.com

125 

xz9(z). But we already know from [7] that this equation implies x, z e {t, 9{t)}+ 

for some t £ E + , which contradicts the 0-primitivity of v. Otherwise, i.e., 4\z\ < \v\, 

since u2uz is a ^-palindrome, v2mv2m+\ a n d 9{v2m+i)8(v2m) overlap with the overlap 

of length at least \v\. 

u _̂______ u ____^ !̂lL——— 

fm+l = 0(v) V2m = &{v) V2m+1 = V 

I—!J_A_Li-I-J -I 
fl(«2m+l) = 0{v)O{vm) = V 

Figure 4.9: v2mv2m+\ = 0(v)v overlaps with its image under 9. In addition, vm+i = 
9{v) overlaps with v\ = v. 

Since \v\ > 4|z|, we can let v = (9(z)z)2vp for some vp € Pref(v) PI Suff(u), see 

Figure 4.9. Then when we look at the overlap between vm+i = 9{v) and vi = v, 

we can say that 9{v) = (z9(z))29(vp). Hence v = vp(z9(z))2 = (9(z)z)2vp. Since 

(z9(z))2 and (9(z)z)2 are ^-palindromes, Lemma 4.6 leads to a contradiction with 

the #-primitivity of v. 

Next, suppose v2m+i — 9(v). Then z = 9(z). If 2\z\ < \v\ < 4\z\, then i>2m+i = 

9{v) — zkzp, where k G {2,3} and zp e Pref(2;). This means that z3 e Suff(u) 

since z2 G Suff(?;m). It follows that i>2m = 0(v) has z as its suffix, which leads 

to a contradiction with the 6>-primitivity of v since 9(v) = zfe2p. Otherwise, i.e., 

when 4121 < |v|, we can let «2m+i — #(v) = z^vp for some vp e Pref(u) with 

wp = 9(vp) (refer to Figure 4.9, but keeping in mind that now v2m+i — 9{v))- Since 
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v\ = v overlaps with vm+i, we have z3 G Pref(w). Also the overlap between vm 

and v^mVimw implies that vpz € Suff(u) (note that vp — 9(vp) in this case). Thus, 

v = vpz
A = z3vpz, which contradicts the 0-primitivity of v since vp is nonempty. 

Secondly, we consider the subcase b). If m > 2, then v\ — • • • = vm_i = v 

and vm = • • • = v2m — 9(v). This means that vm_ivm — v9(v) and V2mV2m+\ — 

9{v)v2m+\ overlap, so Theorem 4.10 implies that i>2m+i cannot be either v or 9(v). 

For m — 1, we have v\ = v2 — v. If v% = v, the Fine and Wilf theorem implies that 

p(u) = p(v). Then, however, the length conditions \v\ < \u\ < 2\v\ implies that v 

is not primitive, a contradiction. Thus, v^ = 9{v). Since u starts with i>, we can 

write v = xy — yz, for some x,y,z € S + with z = 9{z) and 2\u\ — 2\v\ = 2\z\, as 

illustrated in Figure 4.10. Thus, x — pq, z = qp, and y — (pq)%p for some p,q ET,* 

and i > 0. Moreover, since 2|it| < 3|u| < 3|«|, we have |t>| > 2|z|, which means that 

z2 € Suff(v), i.e., z2 e Pref(9(v)). Hence z £ Suff(u). But, we already had that 

x £ Suff(u), which implies that pq = qp. Thus, p(p) = p(q) = p(x) = p(y), which 

contradicts the #-primitivity of v. 

v 

Figure 4.10: How V2V3 = v9(v) and v\ = v overlap in the subcase b) for m = 1 

Now we consider the other subcases. Note that in these subcases m > 2. The 
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subcase c) when vi = • • • = vm = i>m+i — v a n d vm+2 — • • • = w2m = 9(v) is 

illustrated in Figure 4.11. Then v = yz for some y, z G S + with y = 0(y), 2 = 9(z), 

and y G Suff(v). Since |y| > \z\, Lemma 4.15 leads to a contradiction with the 

primitivity of v. The remaining subcases d) is when v\ = • • • = vm- i = v,vm = 9(v), 

Vm+i = v, and vm+2 — • • • — V2m — 9{v). In this subcase, vm-\vm = v9(v) overlaps 

with V2mV2m+i — 9{v)v2m+\ with an overlapped part of length at least \v\. Theorem 

4.10 implies that t>2m+i can be neither v nor 9(v). 

u_ u 3_— 
Vm+l ^VV(V) V(V) V2~m+[ 

- - H 2r —I ^ 1 H r 1 Z 1 
' y > z ' > y > 
\—~ . ' I I-—__!—M 

Vi=V Vm = V 

Figure 4.11: When v\ — • • • = vm = vm+i = v and vm+2 — ••• = v2m. — 9(v) 

To conclude, we showed that u2 ^ u\ and vi = • • • = W2m+i- n 

Proposit ion 4.17. Let u, v G S + swc/i i/iai v is 9-primitive, ui, 1*2,̂ 3 € {u, 0(u)} ; 

and f i , - - - ,V2m £ ( l ')^(w)} / ° r sowe ra > 2. If v\---V2m G Pref(i<i 7/2^3) and 

(2m — l) |u| < 2|u| < 2m|i;|, i/zen either u\ ^ u2 and v± = ••• = V2m> mth 

Vi = yp and U\U2 = (yp)2m~1y for some y,p G S* such that y — 9(y) and 

p = 9(p), or iti = u2, vi = • • • = vm, and vm+i = ••• = v2m = 9(vi), with 

ui = [r(ir)2(ri)2+Jr]m_1r(tr)*(rt)-? and v\ = r{tr)l{rt)l+:>r for some i > 0, j > 1, 

and r,t G S* such that r = 9(r), t = 9{t), and rt is primitive. 

Proof. Just as in the proof of Proposition 4.16, we can assume without loss of 

generality that u\ = u and v\ — v. Then, we analyze two cases depending on 



www.manaraa.com

128 

whether u2 = u\. 

Case 1: Let us look first at the case when u2 ^ i*i, i.e., u2 = 9(u), which differs 

only slightly from Case 1 from the proof of Proposition 4.16. Indeed, it is enough 

to consider only the case when u3 = 9(u), vi = • • • = v2m-i — v and prove that 

V2m — v. Let us suppose for now that v2m — 9{v) and let v = yx and x = z9(z) for 

some x,y, z G S + with x = 9{x) and y — 9(y), as illustrated in Figure 4.12. 

9(u) 9(u) 

9{v) 9{v) 9(v) 9{z) v 

Figure 4.12: When w3 = 9(u), v2m — 6(v) — XV overlaps with y9(z)v because 
9{z)v G Prei(9(u)). 

Note that 9(v) = xy = z9(z)y and y G Pref(9(v)). If \y\ > \x\, then Lemma 4.15 

implies that p(x) = p(y), which is a contradiction with 0-primitivity of v. If \z\ < 

\y\ < \x\, then z G Pref(y) and z9(z)y G Prei(y9(z)y), as illustrated in Figure 4.12. 

Thus, z9(z)y = y9(z)z, which implies that y,z G {£, 9(t)}+, see [7], contradicting 

the 0-primitivity of v. If | | z | < \y\ < \z\, then we have y G Pref(z) and y9{z)y G 

Pref(z9(z)y), see Figure 4.13 i). Then, let 9{z) = z\y — yz2 for some 21,22 G S + 

with z\ = 9{z\) and z2 = #(22) since y G Pref(z). Then, since zy = y9(z) we have 

z2y
2 = y222, a n d hence p(y) = p(z2), which contradicts the #-primitivity of w as 

v = yx = yz2y
2z2. If \y\ < | |z | , then we have 0(2) = 23?/ = y2z4 for some 23, 24 G £ + 
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with zz = 0(23) and z4 = #(24), see Figure 4.13 ii). Now, since zy = y9(z), we have 

Z4V3 = V3Zi- This leads us to the same contradiction as above because v = yz±yAz±. 

9(z) z 9{z) 

9{z) y y 9{z) y 
i) ii) 

Figure 4.13: How v2m = z9(z)y overlaps with y9(z)v when i) ^\z\ < \y\ < \z\, or ii) 
\y\ < 112;I in Case 1 of Proposition 4.17 

Thus, if Ui ^ u2, then we must have vi = • • • = v2m = v. The representations of 

Vi and Uiu2 can be obtained using Theorem 4.10. 

Case 2: Let us look next at the case when u2 = u\ = u, illustrated in Figure 4.14 

and let v = xy with x € SufT(um) and y € Pref(um +i). Moreover, note that \x\ < \y\ 

since \x\ = m\v\ — \u\ and (2m — l)\v\ < 2\u\. Now, if we look at the overlap between 

vi • • • vm and vm • • • i>2m-i, then, due to Theorem 4.10, we get the following subcases: 

a) vi = • • • = vm-i = v and vm = vm+i = ••• = v2m-i = 9(v); b) vx = • • • = vm = v, 

Vm+1 = ••• = V2m-l = 9(v). 

U ^ U3 

Vm Vm+l V2m-1 V,2m 

< x \ V ' : 

Vi=V Vm 

Figure 4.14: If u2 = u, we can regard that v\... vm overlaps with vm... v2m-i not 
depending on the value of 113. 

First, let us consider the subcase a). If 113 = u, then vm-\vm — v9(v) overlaps 

with v2m-iv2m — 9(v)v2m and thus, due to Theorem 4.10, v2m cannot be either 
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v or 9{v). Otherwise, U3 — 9{u) and note that x = 9(x) and y = 9(y) since 

Vm = vm+i = 9(y). Then, since the overlapped part between t>2m-i a n d vm is £5 

we obtain x G Pref(9(v)). Since 9{v) — yx and \x\ < |y|, we have x G Pref(y), 

i.e., z G Suff(y). Thus x G Suff(u), that is, x G Pref(0(u)). Since u3 = 0(u) and 

vm = 0(f) = yx, we can say that vm-\vm overlaps with V2m-î 2m> which results in 

the same conclusion as above. Thus, the subcase a) is not possible. 

For the subcase b), we prove that v2m — 9{v). Let us start our analysis by 

supposing that V2m = v. First, since vm — v ends with x, let v — zwx for some 

z, w G S + with \w\ — \x\. If u3 = 9(u), since V2m — v = zwx, we obtain that 

w G Pref(ii3), i.e., 9(w) G SufT(u). But this means that w = 9(w), since the right 

end of the first u cuts vm = v = zwx after exactly |zio| characters. Since the 

overlap between W2m-i and vm is x, we have xz = zw with x — 9{x) and u; = 9{w). 

Then Lemma 4.6 implies that x,z,w G {£, 9(t)}+ for some £ G E + , a contradiction 

with the 0-primitivity of v = zwx. If u% = u, we immediately obtain v = xy with 

y G Pref(f). Since |x| < \y\, the same contradiction derives from these relations due 

to Lemma 4.15. 

In conclusion, for this case, i.e., when U2 = u\, we obtain that vi = • • • = vm — v 

and vm+i — • • • = v2m = 9(v). By applying Theorem 4.10 to the overlap between 

Vi... vm and vm ... t>2m-i> we get the representations oft* and f by two ^-palindromes 

r and t. • 
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These propositions show that if we suppose v to be ^-primitive, then the values of 

ui, u2, «4, and u5 determine the values of v1:..., vn and w\,..., wm uniquely, modulo 

a substitution of v by 9(v), or of w by 9(w). Thus, they decrease significantly the 

number of cases to be considered. Furthermore, the value of uz may put an additional 

useful restriction on v or w. 

Lemma 4.18. Let u,v G S + such that v is a 9-primitive word, ui, u2, u$ G {it, 9(u)}, 

and vi, • • • ,vn G {v, 9(v)} for some n > 3. If v\ • • • vn G Pref(uiu2«3), u\ 7̂  ui, 

u\ = u3, and (n — l)|u| < 2|tt| < n|t>|, £/ien \v\ < 4 
2 n - l 

Proof. Without loss of generality, we can assume that u\ = u and v\ = v because 

9 is an involution. Propositions 4.16 and 4.17 imply that v\ = • • • = vn = v. 

Hence u9(u) — vn~1x for some x G Pref(u). Since u9(u) is a ^-palindrome, vn~lx — 

9(x)9(v)n~1 and this implies that x = 9{x) and v — yx for some nonempty 9-

palindrome y (see Figure 4.15). 

u 
= — h V 

I—~T~ I j/Tsjj _, 
0(u) v 

Figure 4.15: Since u begins with v, y is a prefix of v. 

Since v G Pref(u), we obtain that y G Pref(v). If |x| < \y\, then Lemma 4.15 

leads to a contradiction with the 0-primitivity of v. Thus \y\ < \x\, which implies 

that \y\ < ~\v\. This means that \v\ < TT^TN because Iwl = n\v\ — 2\u\. D 
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All we did so far in studying the extended Lyndon-Schiitzenberger equation 

U i . . . u5 — v\... vn W\... wm was to consider either the common prefix of Vi... vn 

and w i . . . 1x5, or the common suffix of w\... wm and u\... U5. Next, we combine 

them together and consider the whole equation. The following lemma proves to be 

useful for our considerations. 

Lemma 4.19. Let u,v G £ + such that v is a 9-primitive word, u\, U2, ̂ 3 € {u, 9(u)} 

and V\,-'- ,vn € {v,9(v)} for some n > 3. If v\---vn = U1U2Z for some z e 

Pref(u3); u\ = u2, and (n — l)\v\ < 2\u\, then vi = xyx and z — x2 for some 

x,y e E + such that x = 6(x) and yx = 9(yx). 

Proof. Just as before, we assume that Ui — u and vx — v. Propositions 4.16 and 4.17 

imply that n — 2m for some m > 2, u = {r{tr)'l{rt)%+:)r}m~1r{tr)%{rt)%+:', and 

v = r(tr)%(rt)t+:)r for some r , t e E * such that r = 9(r), t = 9(t), i > 0, and j > 1. 

By taking x = r{tr)% and y = (rt)J, we complete the proof. • 

Next, we prove that the triple (5, 4, m) imposes ^-periodicity for any m > 4. 

Theorem 4.20. Let u,v,w £ E + , Ui,u2,U3,U4,u5 G {u, 9(u)}, Vi,v2,V3,Vi € 

{v,9(v)}, and Wi,--- ,wm G {w,9(w)} for some m > 4. / / these words satisfy 

U1U2U3U4U5 = v\V2VzV± W\ • • • wm, then u is not 9-primitive and u,v,w G {t, 9(t)}+ 

for some t G E + . 

Proof First note that we can assume that w is ^-primitive, since otherwise we 

would just increase the numerical parameter m. If u is not ^-primitive, that is, 
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u S {p, 0(p)}k for some ^-primitive word p € E+ and k > 2, then the equation can 

be rewritten as P1P2 • • -psk — V1V2V3V4W1... wm, where p% € {p, 9{p)} for 1 < i < 5k. 

But then, due to Theorem 4.12, we obtain that v,w G {p, 9(p)}+. Furthermore, 

we can assume that also v is ^-primitive. Indeed, if it is not, then v G {q, 0(q)}3 

for some ^-primitive word q and j > 2. Then, the equation becomes u\... u$ = 

<7i.. .q^wiw-i.. .wm, where qt G {q, 0(q)} for 1 < i < 4j. But this implies that 

u,w G {q, 0(q)}+ due to Theorem 4.14. Since u and w are assumed to be ^-primitive, 

u, w G {g,#(</)} and we have 5\q\ < 4j\q\ + m\q\, which contradicts the fact that 

u, v, and w satisfy the equation Ui... u$ — qi... q^WiWz ... wm. Even when v is 

^-primitive, if m > 7 then the same argument leads to the same contradiction. 

Now we will show that if u, v, and w are ^-primitive, then the equation cannot 

hold for m < 6. Since 6 is an involution, we can assume that u\ — u, v\ = v, 

and wi — w. Let us start by supposing that u, v, and w satisfy U1U2UZU4U5 = 

U1V2V3W4 Wi"-wm. Now, we have several cases depending on where the border 

between v4 and w\ is located. If it is left to or on the border between U2 and U3, 

then Theorem 4.2 implies that u, w G {t, 9(t)}+ for some ^-primitive word t G S+ , 

which further implies that also v G {t,9(t)}+. In fact, u,v,w G {t,0(t)} because 

they are ^-primitive. Then \u\.. .u§\ — 5|i|, while \v1V2V3V4W1 .. .wm\ = (4 + m)\t\ 

with m > 4, which is a contradiction. The case when the border between v4 and iwi 

is right to or on the border between ii3 and U4 will lead the contradiction along the 

same argument. 

file:///v1V2V3V4W1
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So let us suppose that |uiw2| < \viv2V3Vi\ < \uiU2U3\. Note that under this 

supposition, |u|,|w| < \u\. If m\w\ > 2\u\ + \w\ — 1, then u3u±u5 and Wi...wm 

share a suffix long enough to impose the ^-periodicity onto u and w due to Theorem 

4.2. However, as explained before, this leads to a contradiction. This argument also 

applies to u\u2uj, and v\v2v?,v±. As a result, it is enough to consider the case when 

3|v| < 2\u\ < 4\v\ and (m — l)|iu| < 2\u\ < m|iu|. 

There are 16 cases to be considered depending on the values of u2, «3, «4, and U5. 

Note that once these values are determined, the values of vi, v2, v$, v± and wi, • • • , wm 

are set uniquely due to Propositions 4.16 and 4.17. We number these cases from 0 

to 15 by regarding U2W3U4U5 as the 4-bit number based on the conversion u —> 0 and 

9(u) —> 1. For example, case 5 is U2U3U4U5 — uO(u)u0(u). 

First, we consider the case 2, that is, uuu6(u)u = V\ • • • v^ Wi • • • wm. Since 

3\v\ < 2\u\ < 4|v|, |u| < | |u| . Moreover, Lemma 4.18 implies that |iy| < 2m
4_1 \u\. 

Then 5|it| — (4|u| +m|iy|) > 0 which contradicts the fact that u, v, and w satisfy the 

given equation. The same arguments work for the cases when either U1U2U3 = u9(u)u 

(i.e., cases 8, 9, 10, 11), or uzu^u^ = u9(u)u (i.e., cases 2, 10), or U3M4U5 = 9(u)u9(u) 

(i.e., cases 5, 13). 

Secondly we consider the case 1, that is, uuuu9(u) = v\ • • -v^wi • • • wm. Let 

uux = vi---V4, yu9{u) = Wi---wm for some x,y € E+ such that u = xy. We 

immediately obtain now, due to Lemma 4.19, that x = 6{x). Since x € Pref(u3), 

this means that x G Suff(u5), which implies that wm & Suff(x) or x G Suff(u;m). 
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In both cases, we obtain that U3U4M5 and wmwiw2... wm share a common suffix of 

length at least 2\u\ + \w\ — 1. Then we employ Theorem 4.2 to lead a contradiction. 

Among the cases left to be investigated, the only one where we cannot apply this 

technique is case 0. 

Now, case 0 is u\ = u2 — u^ = u^ = u$ — u. Applying Propositions 4.16 and 4.17, 

we have that m — 2k for some k > 2, w\ = • • • = Wk — w, Wk+i = • • • = w2k = 0(w), 

vi = v2 — v, and i!3 = w4 = 6(v). Note that k £ {2,3} since 4 < m < 6. Then, 

Lemma 4.19 implies that u — xyxxy = {y'x'x')k~ly'x' = x2x'2, v = xyx, and 

9(w) = x'y'x' for some x,y,x',y' € S + with x — 9(x), yx = 9(yx), x' = 9(x'), and 

x'y' = 9(x'y'). 

When k — 2, i.e., xyxxy — y'x'x'y'x', we have three subcases depending on the 

lengths of xy and y'x'. If \xy\ < \y'x'\, then by looking at the two sides of the 

equality xyxxy = y'x'x'y'x', we obtain y'x' — xyz = 9(z)xy and x = zx'9(z) for 

some z € S + . Substituting x — zx'9(z) into xyz = 9(z)xy we get 2 = 9(z), and 

hence y'x' = xyz = zxy. Thus, y'x', xy, z G {p}+ for some primitive word p. Let 

z = p1 and y'x' = p? for some i, j > 1. Then y'x' = zxy and x — zx'z imply that 

p> = p2lx'ply. Since p is primitive, we obtain that p(x') = p, which contradicts the 

0-primitivity of 9(w) = x'y'x'. For the case when \xy\ > \y'x'\ we can use similar 

arguments to reach a contradiction. Finally, if \xy\ — |yV|, then x = x', which is a 

contradiction with the 0-primitivity of u since u — xxx'x'. 

When k — 3, i.e., u = xyxxy = (y'x'x')2y'x', we first note that \xy\ > \y'x'\ and 



www.manaraa.com

136 

\xyx\ > \y'x'x'\. If \xy\ > \y'x'x'\, then, by the Fine and Wilf theorem, p(xyx) = 

p(y'x'x'). Since xyx is strictly longer than y'x'x', this means that v — xyx is 

not primitive, which is a contradiction. Otherwise, i.e., \y'x'\ < \xy\ < \y'x'x'\, 

let xy = y'x'z for some z G Pref(x'). Since x' = 9(x'), the equation xyxxy — 

(y'x'x1)2y'x' also implies that xy = 9(z)y'x'. Moreover, since xy = y'x'z — 9(z)y'x' 

and 9(z) G Suff(a;'), we obtain z = 9(z). Thus xy, y'x', z G {q}+ for some primitive 

word q G E + , which, just as above, contradicts the 0-primitivity of 9(w). D 

The next result shows that the triple (5, 3, m) also imposes ^-periodicity for any 

m > 3. 

Theorem 4.21. Let u,v,w G S + , Ui, u2, u3, W4, u5 G {u, #(u)}, Vi, v2, W3 G {u, ^(v)}, 

and w\,--- ,wm G {^,^(1/;)} with m > 3. / / £/jese words verify the equation 

U1U2U3U4U5 = wiW2«3 w i - - - w m ; ^ e n u is not 9-•primitive and u,v,w G {t,9(t)}+ 

for some t G S + . 

Proof. As in the proof of Theorem 4.20, we can assume that w is ^-primitive. Also if 

u is not ^-primitive, then, just as before, Theorem 4.12 results in u, v, w G {t, 9(t)}+ 

for some t G S + . So let us assume that u is 0-primitive. Moreover, we can assume 

that v is ^-primitive. Indeed, if it is not, then v G {p, 9(p)}:> for some ^-primitive 

word p and j > 2. Then the equation becomes U1U2U3W4W5 — pi • • -P3jWiW2 • • • wm, 

where pi G {p, 9(p)} for 1 < i < 3j. For the case m > 5 and the case m = 4, 

Theorems 4.13 and 4.20 lead us to the contradiction, respectively. If m = 3, we can 
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change the roles of v and w, and reduce it to the case when v is ^-primitive. In the 

following, we assume that u, v, and w are ^-primitive and prove that the equation 

cannot hold. 

Now, since 9 is an involution, we can assume that Ui — u, vi = v, and w\ = w. 

As in the proof of Theorem 4.20, in all cases except when the border between 

v3 and wi falls inside Uz, we get a contradiction. Furthermore, using the same 

arguments as in the previous proof, we can assume that 2\v\ < 2\u\ < Z\v\ and 

(m — l)|u;| < 2\u\ < m\w\. Moreover, due to Proposition 4.16, u2 — 9{u) and 

Vi = V2 = vz = v, see Figure 4.16. Then u9(u)x = v3 for some x € S + , which 

satisfies x — 9{x) due to the same proposition. Since x € Pref(«3), if u^ ^ U5, 

then x G Suff(it5) which implies that either wm G Suff(:c) or x G Suff(«;m). In both 

cases, we obtain that U3U4U5 and wmw\W2 • • • wm share a common suffix of length 

at least 2\u\ + \w\ — 1. Hence, Theorem 4.2 implies that u,w G {i,9(t)}+ for some 

t € S + and thus also v G {t, 9(t)}+ which leads to the same contradiction as above. 

Otherwise, Uz = M5 and we have the following four cases left: 

1. u9(u)u9(u)u = vvvwi • • • wm, 

2. u9(u)9(u)u9(u) = vvvw\ • • • wm, 

3. u9{u)uuu — vvvwi • • • wm, 

4. u9(u)9(u)9(u)9(u) — vvvwi • • • wm. 
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9{u) us Ui u5 

v v v w wm 

Figure 4.16: U1U2U3U4U5 = V1V2V3W1 • • -wm for Theorem 4.21 

Let us start by considering the first equation. Since v is ^-primitive, using Lemma 

4.18, we have \v\ < | |u | and |iw| < 2m-ilul- However, then 5\u\ — (3|w| + m|w|) > 

5|d - ^\u\ - 5^rrkl = ffi1"^ M > 0 because m > 3. Hence, 5|u| > Z\v\ + 
1 1 o ' l zm—1 1 1 5(2m— \ ) ' ' — 7 ' ' ' ' 

m\w\ contradicting our supposition that the words u, v, and w satisfy the equation 

u9{u)u9(u)u = vvvwi • • • wm. 

For the second equation, Propositions 4.16 and 4.17 imply that w\ = w2 = • • • = 

wm = w. Since u6(u) — v2vp for some vp £ Pref(v) and u9{u) is a 0-palindrome, 

we have u9(u) = 9{vp)9{vf. Note that 9{vp) £ Suff(0(w)). Also u9{u) = wsw
m-1 

for some ws G Suff(u;). Since m > 3, the Fine and Wilf theorem implies that 

p(9(v)) — p(w) and thus we obtain again the same contradiction as above. 

Next we consider the third equation. Since u± = U5, Propositions 4.16 and 4.17 

imply that m = 2k for some k > 2 and W\ = • • • — Wk = w and wk+i = • • • = w2k = 

9{w). Let wk9(w)h — z\z2u
2 for some 21,22 £ S + with \z\\ = \z2\ — k\w\ — |w|, as 

illustrated in Figure 4.17. 

u "\u) u u u 

Figure 4.17: The suffix of U3 can be written in two ways as 2/12/22/3 and z\z2. 
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Then, z\z2 G Suff(u), which due to length conditions means that z\ G Suff(u/fe). 

Thus, 0(zi) G Pref(0(u;)fe) which implies immediately that z2 = 9(zi). Similarly, 

we can let u9(u)u = v3yiy2y3 for some 2/1,2/2,2/3 6 S + with |j/i| = \y2\ = 12/31 = 

|u| — \v\. Then 2/12/22/3 = Zi0(2i), which implies 2/3 = #(2/1) and 2/2 = 0(2/2)- Recall 

that (2A; — l)\w\ < 2\u\ < 2k\w\ was assumed. So we have 12/12/22/31 < IH and 

|u/| < 2^TIUI — |lul- Thus, I2/12/22/3I < |M- This further implies that \x\ = 

\u\ — 12/12/2 2/31 > I2/11 - If we look at the second v, since 2/3 € Suff(u), using length 

arguments, we obtain that 2/3 € Pref(v), and hence 2/3 G Pref(u). Since 12/31 < \x\-> 

this means that 2/3 £ Pref(x) and hence (̂2/3) G Suff(:r), which further implies 

0(2/3) G Suff(v). Thus 2/2 = 0(2/3) because 2/2 £ Suff(v), which results in 2/1 = 2/2= 2/3 

and, moreover, they are all 0-palindromes. Hence 2/12/2 = 0(2/2)0(2/1) = 0(2/12/2), which 

is a prefix of 9(v). This means that u9(u)u and v3^(w) share a prefix of length at 

least 2\u\ + \v\ — l. Consequently pe(u) — p${v) which leads to the same contradiction 

as before. 

9{u) 9(u) 9{u) 9(u) 

V V V wk 0 (u ,)fc 

Figure 4.18: The suffix of 113 = 9{u) can be written in two ways as 2/12/22/3 and 
zi9(Zl). 

Lastly, we consider the fourth equation, illustrated in Figure 4.18. Just as in 

the case of the third equation, 2/3 = 0(2/0 and 2/2 = 0(2/2)- Since 2/22/3 £ Suff(0(u)), 

these equalities give 0(2/3)0(2/2) = 2/12/2 € Pref(it) C Pref(v2). Thus, we can see that 
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u9(u)2 and v5 share their prefix of length at least 2|u| + \v\. The rest is as same as 

for the third equation. 

In conclusion, if u is ^-primitive, then, using length arguments, we always reach 

a contradiction. On the other hand, if u is not ^-primitive, then we proved that 

there exists a word t G E + such that u,v,w £ {t, 9(t)}+. • 

Combining Theorems 4.12, 4.13, 4.20, and 4.21 and Examples 10 and 11 all 

together, now we conclude our analysis on the extended Lyndon-Schiitzenberger 

equation with the summarizing theorem. 

Theorem 4.22. For u,v,w G S + , let u i , . . . , u* G {u, 9(u)}, V\,..., vn G {v, 9(v)}, 

and i u i , . . . ,wm G {w,9(w)}. If Ui.. .ut = v\.. .vn w\.. .wm and £ > 5, n,m > 3, 

then u,v,w G {t,9(t)}+ for some t G E + . Furthremore, n — 3 and m — 3 are 

optimal. 

4.5 Conclusion 

This paper continues the investigation of an extended notion of primitiveness of 

words, based on replacing the identity between words by a weaker notion of "equiv­

alence" between a word u and 9(u), where 9 is a given antimorphic involution. 

Firstly, we completely characterize all non-trivial overlaps between two words in 

{v,9(v)}+ of the form a{v,9{v)) • x — y • (3(v,9(v)). As an application of this 

characterization, we extend the Lyndon-Schiitzenberger equation to the equation 
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ui---ue = vi---vnwi---wm, where uu...,ue € {u,0(u)}, vi,...,vn € {v,0(v)}, 

and wi,...,wm € {•{*;,#(«;)}. The strongest result obtained states that for £ > 5 

and n, m > 3, u, v, w G {£, #(i)}+ for some word i, while once n or m become 2, the 

existence of such t is not guaranteed any more. 
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Chapter 5 

An improved bound for the 
extended Fine and Wil f s theorem 

This chapter consists of the latest updates on the extended Fine and Wilf's theorem 

discussed in Chapter 3. A paper1 on these results has just been accepted for the 

publication in Fundamenta Informaticae (as of August 13, 2010) as follows: 

L. Kari and S. Seki. 

An improved bound for an extension of Fine and Wilf's theorem and its optimality. 

Fundamenta Informaticae 101(3) (2010) 215-236. 

Summary: Considering two DNA molecules which are Watson-Crick (WK) com­

plementary to each other "equivalent" with respect to the information they encode 

enables us to extend the classical notions of repetition, period, and power. WK-

complementarity has been modelled mathematically by an antimorphic involution 9, 

i.e., a function 9 such that 9{xy) = 9{y)9(x) for any x, y G £*, and 92 is the identity. 

XA version of this chapter has been accepted for publication. 
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The WK-complementarity being thus modelled, any word which is a repetition of u 

and 9(u) such as uu, u9{u)u, and u9(u)9(u)9(u) can be regarded repetitive in this 

sense, and hence, called a #-power of u. Taking the notion of 0-power into account, 

the Fine and Wilf 's theorem was extended as "given an antimorphic involution 9 and 

words u, v, if a 0-power of u and a 0-power of v have a common prefix of length at 

least b(\u\, \v\) — 2\u\ + \v\ —gcd(|u|, \v\), then u and v are 0-powers of a same word." 

In this paper, we obtain an improved bound b'(\u\, \v\) — b(\u\, \v\)— [gcd(|u|, |v|)/2j. 

Then we show all the cases when this bound is optimal by providing all the pairs of 

words (u, v) such that they are not (9-powers of a same word, but one can construct 

a 0-power of u and a 0-power of v whose maximal common prefix is of length equal 

to 6'(|u|, \v\) — 1. Furthermore, we characterize such words in terms of Sturmian 

words. 
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An improved bound for an extension of Fine and 
Wilf 's theorem and its optimality 

Lila Kari and Shinnosuke Seki 

Department of Computer Science, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. 

5.1 Introduction 

This paper investigates an extension of Fine and Wilf's theorem in combinatorics 

of words. Recall that a positive integer p is called a period of a word w if the z-th 

and the (i + p)-ih letters of w are the same for any 1 < i < \w\—p. Fine and Wilf's 

theorem [12] states that if a word has two periods p, q and is of length at least 

P + Q — gcd(p, q), then gcd(p,q) is also its period, where gcd denotes the greatest 

common divisor. A concise method to prove this result, [5], also proves that the 

lower bound is "strongly optimal" in the following sense, which was defined in [6], 

that for any pair (p, q) of integers with p > q > gcd(p, q), one can construct a word 

of length p + q — gcd(p, q) — 1, with p and q as periods, but without gcd(p, q) as 

period (the set of all such words with p and q being coprime is denoted by PER). 

This theorem has several extensions: e.g., considering more than two periods [3], 

[4], [6], [13], based on abelian periods [7], for partial or bidimensional words [1], [2], 

[15]. 

Changing the focus from integers to words, this theorem can be reformulated as 

follows: "Given words u, v, if a power of u and a power of v have a common prefix 
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of length at least \u\ + \v\ — gcd(|u|, |v|), then u and v are powers of a common 

word, i.e., they share their primitive root." This result was recently extended in 

[9], by generalizing the notion of power of a word as inspired by the characteristics 

of DNA-encoded information. Briefly, a DNA strand can be abstracted as a word 

over the four-letter alphabet {A, C, G,T}. Due to the so-called Watson-Crick (WK) 

complementarity A-T and C-G, two complementary DNA single strands with oppo­

site orientations bind to each other to form the structure known as a DNA double 

strand. WK-complementarity has been modelled mathematically by an antimor-

phic involution 0, i.e., a function 0 such that 9(xy) = 9(y)9(x) for any x,y E T,* 

(antimorphism), and 92 is the identity (involution). An antimorphic involution cap­

tures the main features of WK-complementarity, namely that the WK-complement 

of a DNA single strand is the reverse (antimorphic property) complement (invo­

lution property) of the given strand. If we set the antimorphic involution on the 

four-letter DNA alphabet defined by 0(A) = T and 9(C) — G, then for any word 

w G {A, C, G, T}* representing a DNA single strand, the word 9(w) will represent its 

WK-complement. For example, using 9, we can calculate the WK-complement of 

AAC as 0(AAC) = 0(C)0(AA) = 0(C)0(A)0(A) = GTT. We can say that two complemen­

tary DNA single strands are equivalent because one can be obtained from the other 

by 0. Based on this idea, for instance, the strand AACGTTGTT becomes a "power" 

of AAC because it consists of AAC followed by its WK-complement GTT twice. By 

using an antimorphic involution 0 as a model of the WK-complementarity, a word 
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in u{u, 9(u)}* is called a 9-power of u [9]. With this extended notion of power, 

the Fine and Wilf's theorem was extended in [9] in the following way: "Given an 

antimorphic involution 9 over an alphabet E, and given non-empty words u, v over 

S of lengths p, q with p > q, if a 0-power of u and a 0-power of v share a prefix of 

length at least b(p, q) = 2p + q — gcd(p, q), then u and v are 0-powers of a common 

word (in such case, we say that u and v share their 9-primitive root)." In [9] some 

examples of words u, v were provided with the property that such a common prefix 

of length b(p, q) — 1 is too short to force u and v to have the same ^-primitive root. 

However, these examples do not answer the question of whether b(p, q) is strongly 

optimal or not, i.e., whether for any (p, q), we can find two words u, v of length p, q 

with different ^-primitive roots such that a 0-power of u and a 0-power of v share a 

prefix of length b(p, q) — 1. 

The first contribution of this paper is to give the extended Fine and Wilf's the­

orem an improved bound b'(p, q) = b(p, q) — [gcd(p, q)/2\ in a constructive manner, 

which amounts to the negative answer to the above question. Specifically speaking, 

we design a pair (u, v) of words of lengths p, q with distinct ^-primitive roots in such 

a manner that one can construct a #-power of u and a #-power of v such that their 

common prefix is as long as possible relative to p and q. We prove that such a com­

mon prefix is of length at most b'(p, q) — 1, and hence, b'(p, q) becomes the improved 

bound (Theorem 5.22). We call such a common prefix of length exactly b'(p, q) — l a, 

boundary common prefix based on u and v. Being constructive, our proof simultane-
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ously characterizes the set of all pairs of words with distinct ^-primitive roots based 

on which one can construct a boundary common prefix. This characterization is the 

main contribution of this paper. Two corollaries of interest follow: First, there are 

(infinitely many) pairs of integers (p, q) such that there does not exist any bound­

ary common prefix based on words of respective lengths p, q (Corollary 5.23), and 

hence, b'(p,q) is not strongly optimal. Second, all the boundary common prefixes 

are homomorphic images of boundary common prefixes based on some binary words 

of coprime lengths. This is very similar to the fact that the words which verify the 

strong optimality of the bound for the Fine and Wilf's theorem are homomorphic 

images of a (binary) word in PER. de Luca and Mignosi in [11] proved that a word 

in PER is a finite Sturmian word, or more strongly, the set of all factors of words in 

PER is equal to the set of all finite Sturmian words. We will show that boundary 

common prefixes based on words of coprime lengths are also finite Sturmian words, 

but there exists a finite Sturmian word which never appears as a factor of such 

boundary common prefixes. 

This paper is organized as follows: Section 5.2 introduces basic notions and no­

tation as well as some known results used for our discussion. That is followed by the 

constructive proof of the improved bound b'(p, q) in Section 5.3 with a few results 

stating that this bound is not strongly optimal. In Section 5.4, the relationship be­

tween boundary common prefixes and finite Sturmian words is discussed. Section 5.5 

concludes this paper with some future directions of research. 
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5.2 Preliminaries 

Let £ be a finite alphabet containing at least two letters. Throughout this paper, 

elements of E (letters) will be denoted by a, b. By E* we denote the set of all finite 

words over E. The empty word is denoted by A and let E+ = E* \ {A}. The length 

of a word w G E* is denoted by |w|. For a set X C E+ , X* — {x,\x,2 • • -xn \ x% G 

X for all 1 < i < n}, and X+ = X* \ {A}. For a word w G E*, a word x G £* is 

called a prefix (suffix) of w if w — xr (resp. w = rx) for some r G E*. Let Pref(u;) 

and Suff (w) be the sets of all prefixes of w and of all suffixes of iu, respectively. Also 

let prefn(u;) denote the prefix of w of length n. If w = rxt for some r,t £ E*, then 

x is called an infix of w, and if furthermore r, t ^ A, x is called a proper infix of u;. 

For x, y G £*, we denote by x A y the maximal common prefix of x and y. 

A non-empty word w G E+ is said to be primitive if it cannot be written as a 

power of another word; that is, if w = tn, then n = 1 and w = t. For a non-empty 

word w; G E+ , the shortest word £ G E+ such that w = tn for some n > 1 is called 

the primitive root of u; and is denoted by p(w). With respect to the primitive root 

and the maximal common prefix, there is a result from [5] shown in a form that will 

be utilized in this paper. 

Proposition 5.1 ([5]). Let X = {r,t} C S + , i e rX*, andyG tX*. If\x/\y\ > \rt\, 

then p(r) = p(t). 

A mapping 0 : E* —)• E* is called an antimorphism if for any words x,y G E*, 
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9(xy) = 9(y)9(x); an involution if 92 is the identity function. Throughout this paper, 

9 is assumed to be an antimorphic involution on E unless otherwise noted explicitly. 

The mirror image (or mirror involution), which maps a word to its reverse, is a 

typical antimorphic involution. A word w € E* is called a 6-palindrome if w — 9(w), 

see [10]. The next two lemmas on ^-palindromes play significant roles in this paper. 

Lemma 5.2. For 9-palindromes x, y € E* of the same length d, if pref |-d/2] (
x) — 

Pref[d/2](y); thenx = y. 

Lemma 5.3. Letx,y£ E + be two 9-palindromes with d — gcd(\x\,\y\) and\x\ + \y\ > 

3d. For any integer i > 1, if \xy A ylx\ > \xy\ — 2d, then p(x) — p(y). 

Proof. The first case is when |x| = d. Due to the hypothesis on \x\ + \y\, in this 

case we have \y\ > 2d. Then the overlap between xy and y%x implies that y begins 

with x. If 12/| = 2d, then y — x2 due t o x = 9(x) and y = 9{y); otherwise (|y| > 3d), 

the overlap implies \xy Ay\ > 2d, and hence, x2 € Pref(y). Because of x = 9{x) 

and y — 9(y), y has x2 also as its suffix. Combining these together yields xy = yx. 

Using Proposition 5.1, we get p(x) = p(y). 

The second case is when |x| > 2d and \y\ = d. Let xv = pref|x|_rf(:r). Under 

this length condition, the overlap between xy and y%x implies that xv G Pref(y*xp). 

Since the length of xp is a multiple of d, this means that xp is a power of y and y 

is a prefix of xp, i.e., y £ Pref (a;). This is equal to y e Suff(a;) and actually now we 

have that a; is a power of y. 
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The last case is when |a;|, \y\ > 2d. In this case, the overlap gives x € Pref(y':r) 

and y G Pref(xy). So, if \y\ > \x\, then the latter prefix relation implies that 

x € Pref(y), which is equivalent to x € Suff(y). With y G Pref(ary), this implies 

that xy — yx so that p(x) = p(y). Conversely, if \y\ < \x\, then according to 

x G Pref(y lx), we can let x — y3yp for some j ' > 1 and yp G Pref(y). Since x and 

y are ^-palindromes, x = y3yp = 9(yp)y
3 holds. This equality gives yp = 9(yp), and 

hence, imposes p{yp) = p{y) = p(x) due to Proposition 5.1. • 

In [9], a special class of primitive words was proposed that takes into account 

the notion of antimorphic involution. For a non-empty word i G E + , we call a word 

in t{t, 0(t)}* a 9-power oft. A non-empty word w G E + is said to be 6-primitive if it 

cannot be written as a 0-power of another word, that is, for t G S + , w G t{t, 9(t)}* 

implies w — t. The 9-primitive root of w, denoted by pe(w), is the ^-primitive word 

t such that w G t{t,9(t)}*. The uniqueness of ^-primitive root was proved in [9] 

using Theorem 5.7 in Section 5.3. 

Lemma 5.4 ([9]). Let w G E + be a 9-primitive word and w\, w2, w3, w4 G {w, 9(w)}. 

If W1W2X = yw3W4 holds for some non-empty words x, y G S + with \x\, \y\ < \w\, 

then W2 7̂  W3. 

From this lemma, the next theorem easily follows. This is an analogous result 

to the one stating that a primitive word cannot be a proper infix of its square. 
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Theorem 5.5 ([14]). For a 9-primitive word w G E + , neither w9(w) nor 9(w)w 

can be a proper infix of a word in {w, 9(w)}3. 

5.3 An Improved Bound for the Extension of Fine 

and Wilf 's Theorem 

Taking the #-primitivity into account, an extension of the Fine and Wilf's theorem 

was proposed in [9], of the following two forms: 

Theorem 5.6 ([9]). For u, v G E + with \u\ > \v\, if a 9-power ofu and a 9-power of 

v share a common prefix of length at least 2|u| + |i>|—gcd(|w|, \v\), then pg{u) = pe{v), 

i.e., there exists a 9-primitive word t G E + such that u, v G t{t,9(t)}*. 

Theorem 5.7 ([9]). For u, v G E +
; if a 9-power of u and a 9-power of v share a 

common prefix of length at least lcm(|tt|, \v\), then p$(u) = p$(v), where lcm(|M|, \v\) 

denotes the least common multiple of \u\ and \v\. 

These theorems give two bounds, and one can be larger than the other depending 

on the value of gcd(|u|, \v\) as lcm(|u|, \v\) < 2\u\ + \v\ — gcd(|u|, \v\) if and only if 

\v\ < 2gcd(|w|, \v\). Thus, for integers p, q with p > q, by letting 

{ lcm(p,q) ifq<2gcd(p,q); 

(5.1) 

2p + q - gcd(p, q) if q > 3gcd(p,q), 
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u u _Ji——"— 
I I b 

a a b o, a a b a a b a a a 6 a a 
I 1 I I a 

v v 9(v)9{v)-%—— 

Figure 5.1: Even from words with distinct ^-primitive roots, it is possible to con­
struct ^-powers whose maximal common prefix is shorter by 1 than the bound given 
in Theorem 5.8. 

one can merge Theorems 5.6 and 5.7 into one theorem as follows. 

Theorem 5.8. For u,v G E+ with \u\ > \v\, if a 9-power of u and a 9-power of v 

share a common prefix of length at least b(\u\, \v\), then pg(u) = pg(v). 

This theorem indicates the possibility of constructing two words u, v with |u| > 

\v\ such that a 0-power of u and a 0-power of v have a common prefix of length 

b(\u\, \v\) — 1, while at the same time pe{u) ^ Pe(v). Here we provide two of such 

examples, which were introduced in [9]. 

Example 12. Let 9 : {a, b}* —> {a, b}* be the mirror involution, u = a2ba3b, and 

v = a2ba. Then, u3 and v29(v)2v have a common prefix of length 2\u\ + \v\ — 

gcd(|«|, \v\) — 1, but p$(u) ^ Pe(v). Figure 5.1 is a visualization of this example. 

Example 13. Let 9 : {a, b}* —> {a, b}* be the mirror involution, u = ba2baba, and v — 

ba2ba. Then u9(u)2 and v4 have acommon prefix of length 2|tx| + |w|—gcd(|u|, \v\) — 1, 

but pe{u) ^ p8(v). 

In [6], a sharp distinction was made between a "good" bound and an "optimal" 

bound. Following this distinction, we define the optimality of a bound in the context 
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of the extended Fine and Wilf's theorem. For a pair of integers (p, q) with p > q > 

2gcd(p, q)2, an integer k is called a good bound for (p,q) if for any antimorphic 

involution 6 and for any words u, v G S + with \u\ = p and \v\ = q, once there exist 

a #-power of u and a 0-power of v which share a prefix of length at least k, one has 

Pe{u) — p$(v). Based on this, k is an optimal bound for (p,q) if it is a good bound 

for (p, q) whereas A; — 1 is not; i.e., there exist an antimorphic involution 9 and words 

u, v of length p and q with p$(u) ^ pe{v) from which one can construct a 0-power of u 

and 0-power of v whose maximal common prefix is of length k — 1. A bound &(•, •) of 

two variables is said to be strongly optimal if for any (p, q) satisfying the inequality 

mentioned previously, b(p, q) is optimal. Although the goodness, optimality, and 

strong optimality are defined here for the extended Fine and Wilf's theorem, these 

notions can be defined for any variant of this theorem. 

Examples 12 and 13 prove the optimality of b(p,q) for (p, q) equal to (7,4) and 

(7, 5), respectively. The bound given by the Fine and Wilf's theorem is known to be 

strongly optimal (see [5]). A question, therefore, arises of whether b(p,q) is strongly 

optimal or not. We will show that b(p, q) is not strongly optimal by proving that 

b'(p,q) = b(p,q) — [gcd(p:q)/2\ is still a good bound, strictly smaller than b(p, q) 

unless p and q are coprime. 

2 The first inequality can be assumed without loss of generality. The second one is reasonable in 
the context of Fine and Wilf's theorem because q = gcd(p, q) means that p is a multiple of q, and 
hence, the period p is not essential. Whenever we refer to p, q from now on, we implicitly assume 
that the inequality p > q > 2 gcd(p, q) holds. 
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Unlike the proof of Theorem 5.8 in [9], our proof in the following is constructive. 

More concretely speaking, we will search for words u and v based on which one 

can build a boundary common prefix. For words u,v E E + with |w| > \v\ and 

pe(u) / Pe(v), we call a word w G S + a boundary common prefix based on u and 

v if there exist a 0-power of u and a 0-power of v whose maximal common prefix 

is w and of length at least b'(\u\, \v\) — 1. By BCPg(u, v), we denote the set of all 

boundary common prefixes based on u and v. Figure 5.1 illustrates a boundary 

common prefix a2bo?ba2bo?ba2 based on the specific u and v given in Example 12. 

What we actually prove in the following is that the length of boundary common 

prefixes based on u and v is exactly b'{\u\,\v\) — 1. 

As shown in Eq.(5.1), b(p, q) displays different behaviours depending on whether 

q < 2gcd(p,q) or not, and hence, so does b'(p,q). As such, we will prove that 

b'(p, q) is good for (p, q) with p > q = 2 gcd(p, q) in Section 5.3.1, and for (p, q) with 

p > q > 3gcd(p, q) in Section 5.3.2. Note that we do not have to consider any (p, q) 

with p > q — gcd(p, q) as mentioned previously. In Section 5.3.3, we will combine 

these two results together to conclude that b'(p,q) is good for any (p, q). 

5.3.1 The case when q = 2gcd(p,q) 

Firstly we handle the case q = 2gcd(p,q) in Proposition 5.9. Its proof will suggest 

a construction of examples which verify the optimality of the new bound b' (p, q) for 

any pair of integers (p, q) satisfying this condition. 
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{d/2\ 
u u <*+\ 

a 0 a p 0 a p a p $ 

Figure 5.2: Two words u2 and v^n~1^29{v)^n~x^2+l share a prefix of length 2\u\ — 
[d/2\. 

Proposition 5.9. Let u,v € S + with \u\ > \v\ and \v\ = 2gcd(|i*|, \v\). If a 0-

power of u and a 0-power of v share a prefix of length 2\u\ — |_gcd(|u|, |u|)/2j, then 

pe(u) = peiy). 

Proof. Let d — gcd(|it|, \v\). The length condition on |w| and \v\ is equivalent to that 

2\u\ — n\v\ holds for some odd integer n > 3. Let us translate the problem setting 

as: 1411/2 and V\v2 • • -vn agree with each other up to their first 2\u\ — [d/2\ letters, 

where iti = u, u2 € {u, 0(u)}, v\ = v, and v2,...,vn € {u, 0(v)} (see Figure 5.2). 

One can regard ui as a catenation of n words or 'blocks' w\, w2, • • •, wn of length d. 

In the similar fashion, one can let u2 — wn+\ • • • w2n for some words wn+i,..., w2n 

of length d. Then vt = w2l-\w2l holds for any 1 up to n — 1. As for vn, we can let 

vn = u;2n-ipref|-d/2i (w2n)x for some word x of length [rf/2j. 

It is clear that when u2 is 0(u), i)(n+i)/2 = wnwn+i becomes a 0-palindrome 

(v — 9(v)) because it is located at the center of u\u2. Hence, wn+i = 9(wn), i.e., 

v = 9(v) = wn9(wn), and u = y(n_1)/2u;n. These mean that u, v e wn{wn,0(wn)}* 

so that pe(^) = Po(v). 

Let us consider the other case when u2 is u. Let iui = a and u;2 = /?• Since 
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U2 = u begins with af3, wn+i — a and wn+2 = j3. If either V(„+i)/2 = wnwn+i or 

^(n+i)/2+i = ^7i+2^n+3 is v, then a overlaps with /3 and results in that a — f3. As a 

result, u,v e a{a, 9(a)}*, i.e., p$(u) = p$(v). If neither holds, then we obtain a — 

9(a), j3 = 9(P), and wn — fi; furthermore if n + 3 ^ 2n, then wn+3 = a. According 

to the same argument, we can figure out that unless v2 — • • • = i>(n+i)/2-i — v a n d 

u(7i+i)/2 = • • • = vn-i = vn = 9(v), one has p$(u) = pe(v). In this only one remaining 

case (illustrated in Figure 5.2), W2n = P and pref|-rf/2] (w2n)x = a- Thus, a = /3 due 

to Lemma 5.2, and hence, p$(u) = pe(v). D 

This proof clarifies that the only pair of a 0-power of u and a 0-power of v 

which can share a prefix of length 2\u\ — d without imposing p$(u) = pe(v) is 

(uu,v(-n~1S)/29(v)(n~1V2+1), where n satisfies 2\u\ = n\v\. Since 2\u\ — d < 2\u\ — 

\d/2\ — 1, the next result follows from this proof. 

Corollary 5.10. \BCPQ(U,V)\ < 1 for any u,v € E + with pe(u) ^ pe(v) and 

\u\ > \v\ — 2gcd(|u|, \v\). 

The proof of Proposition 5.9 and Figure 5.2 hint the possibility that if a and /3 

are ^-palindromes of the same length d which disagree with each other for the first 

time at their center, i.e., their [d/2]-th letter, then we can reach the new bound 

minus one while keeping pe(u) ^ Pe(v). For instance, let 9 be the mirror involution 
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on {a, b}, a = ad, and 

1^ / 2 1 - 1 ^ / 2 1 - 1 if rf is odd 

(5.2) 

a ^ - ^ f t a W 2 ! - 1 if d is even. 

For u = (a^)^-1) /2 /? and v = a/3, we have \u2 A v(*-i)/*0(v)(n-W+i\ = 2|u| -

[d/2\ — 1. Since v contains at most two occurrences of b and they occur only in the 

latter half of it, v is ^-primitive. Hence, peiu) ^ p&(v). 

Theorem 5.11. b'(p,q) is optimal for any pair (p,q) with p> q = 2gcd(p,g). 

Besides giving the verification of optimality to b'(p,q), the proof enables us to 

enumerate all pairs of (tx, v) with distinct ^-primitive roots, \u\ > \v\ — 2gcd(|«|, |w|), 

and BCP«(M,V) is non-empty, i.e., |BCPfl(u,v)\ = 1 (Corollary 5.10). The way to 

construct (u,v) from (a, /3) being known (see Figure 5.2), it suffices to provide the 

set of all possible values of (a, /?). Note that it is insufficient for (a, /3) to be a pair of 

two distinct ^-palindromes of the same length d and with the same prefix of length 

\d/2] — 1. For instance, although a — a9{a) and /3 = 9(a)a satisfy these conditions, 

u,v G a{a, 0(a)}*, i.e., p$(u) = pe(v). Excluding these instances leaves the following 
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Ti = {(xa9(x),xb9(x)) \ x G £*, a,b G S such that a ^ b, a = 9(a), b = 9(b)}; 

T2 = {(xa9(a)9(x),xb6(b)9(x)) \ x G £*, a, b G S such that a ^ b, a ^ 9(b)}; 

T3 = {(xa9(a)9(x),x9(a)a9(x)) \ x G S+ such that a / 0(a), a: £ {a,9(a)}+}. 

Actually all of these sets serve our purpose, and hence, in the rest of this paper, we 

will use a, (3 only to denote a pair of words in Ti UT2 UT3. In order to see that (a, ft) 

makes the words u = (a/3)(n-1)/2/3 and v = a(3 have distinct ^-primitive roots, we 

just have to prove that there does not exist a word t such that a, (3 G {t, 9(t)}+. 

This is because u, v G {a, /5}+ and if p<?(u) = A?(w), then due to d = gcd(|u|, |u|), 

£ = pe(u) is of length at most d, and hence, a, /? G {£, #(i)}+-

Proposition 5.12. / / (a, /5) G Ti U T2 U T3, £/ien £/«ere c/oes noi exist t G S +
 SUC/J 

that a, 0 G {t,0(i)}+. 

Proof. Note that a ^ ft. Suppose the existence of such £ and let a = £1 • • • £* and 

ft = t[---t'k for some jfc > 1 and «i , . . . , tk, t[,..., t'k G {t,9(t)}. If (a,ft) G Ti, then 

the length of a (and /?) is odd so that k is odd. Since a = 9(a), this means that 

t — 9(t), and hence, a = ft, which is a contradiction. Even if (a,/?) G T2 U T3, an 

odd A; causes the same problem. 

Let us consider the case (a, ft) G T2 and k is even. Then t\ • • • t^/2 = xa, 

tk/2+1 • • -tk = 9(a)9(x), t[ • • • t'k,2 = x6, and £'fc/2+1 • • • t'k = 9(b)9(x). Hence, for some 
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y G SufT(x), tk/2 = ya, tk/2+i = 9(a)9(y), t'k/2 = yb, and t'k/2+1 = 9(b)9(y). Since 

a ^ b, both t/;/2 7̂  4/2 a n d 4/2+1 7̂  4/2+1 m u s t hold. These four words are either 

t or 9{t) so that we have either ya — 9(a)9(y) and yb = 9(b)9(y) or ya = 9(b)9(y) 

and y& = 9(a)9(y). In the latter case, if y is empty, then a — 9(b); otherwise, these 

two equations imply that y begins with 9(b) and with 9(a) so that 9(b) = 9(a); both 

contradict the condition on a, b in T2. Even in the former case, unless y is empty, 

we reach this contradiction along the same argument. If y is empty, then a = 9(a), 

b — 9(b), and one of these has to be t and the other has to be 9(t). This is, however, 

impossible because a is assumed to be neither b nor 9(b). 

The same but simpler argument works for (a, /3) £ T3. Note that along this 

argument y should be non-empty because otherwise tk/2 = «, and hence, x — 

h • • • tk/2-i € {a, 9(a)}+, which is against the definition of T3. • 

Theorem 5.13. Let u,v € S + with po(u) ^ po(v) and \u\ > \v\ = 2gcd(|w|, \v\). 

Then BCP<?(u, v) ^ 0 if and only if u = (aP)^'1^2^ and v = af3 for some odd 

integer n > 3 and (a, /3) € 7\ U T2 U T3. 

In the next subsection, we will prove that even when this length condition |it| > 

|i>| = 2gcd(|«|, \v\) does not hold, the existence of boundary common prefix requires 

u and v to be described by two distinct ^-palindromes a, (3 of length d taken from 

Ti, T2, or T3, and hence, these three sets will completely characterize the boundary 

common prefixes. 
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5.3.2 The case when q > 3gcd(p,q) 

The proof of our improved bound b'(p,q) continues here for (p,q) with p > q > 

3gcd(p, q). Under this length condition, by definition, b'(p, q) = 1p + q — gcd(p, q) — 

[gcd(p,q)/2\. Unlike the case considered in the previous subsection, this bound 

shall turn out not to be optimal for some such (p, q). A constructive way to find 

the optimal bound is to build an antimorphic involution 6 and words u and v with 

distinct ^-primitive roots and |u| > \v\ > 3gcd(|u|, \v\) such that the maximal 

common prefix between a 0-power of u and a 0-power of v gets as long as possible 

relative to |u| and \v\. This informal description allows us to assume that u and v 

are ^-primitive, though in formal problem settings the validity of this assumption 

has to be verified (see Lemma 5.15.) 

First of all, we briefly mention how small the optimal bound for (p, q) can be 

relative to p and q. The following parameterized example proves that 2p is not a 

good bound for any such pair (p, q), that is, the optimal bound has to be bigger 

than 2p. 

Example 14. Let 6 be the mirror involution on {a, b}. For a given (p, q) with p > 

q > 3gcd(p,<?), let V = a2p (™°d9)6-2p (mod?) a n d UQ^ = vl2p/q\a2p (modg) T h e n 

\u0(u)u3 A v^2plql{ I = 2p regardless of the value of u3 6 {u, d(u)} because both u and 

Q(u) begin with a. In addition, pe{u) ^ pe(v). 

As a digression, this example can be easily modified to show that 2p+ [gcd(p, q)/2] — 
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2\u\ + \v\ - gcd(|ti|, \v\) - Lgcd(|«|, |«|)/2J - 1 
u or 0(u) 

n u or 0(u) 
^ 2 

H - A T H , V v or 0(u) t; or 0(v)" , 
w or 9(v) 

Figure 5.3: A boundary common prefix based on u and v. This shows how UU2U3 
and W2 • • • vnvn+i overlap with each other when Condition (5.3) is satisfied. 

1 is not a good bound for any such (p, q), either. Since — 2p (mod q) is a multiple 

of gcd(p, q), we can say that the suffix b~2p (mod «> of v consists of ' ^ J™^ q) blocks 

bd. Replacing each of these blocks with /3 given in Eq. (5.2) verifies this point. 

To return to our point, u and v are to be constructed so as for such a maximal 

common prefix to be of length at least 2\u\ in light of Example 14. Hence, the 

common prefix is formalized with an integer n satisfying (n — \)\v\ < 2\u\ < n\v\ and 

words ui,U2,U3 € {u, 9(u)} and «i , . . . ,vn,vn+i G {v, 9(v)} as U1U2U3 At>i • • • vnvn+i 

with the following condition: 

\u1U2U3 A vi • • -vnvn+iI > 2|u| + k for some A; > 0 (5.3) 

Note that u\ and i>i are to be fixed to u and v without loss of generality. Figure 5.3 

illustrates the maximal common prefix between a #-power of u and a 0-power of v 

satisfying Condition (5.3) with k = \v\ — gcd(|w|, |v|) - |_gcd(|u|, \v|)/2J - 1. 

Lemma 5.14. Let u,v be distinct 9-primitive words with \u\ > \v\ > 3gcd(|w|, \v\). 

file:///u1U2U3
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/ / there exist an integer n satisfying (n — l) |u| < 2\u\ < n\v\, and words u\ = u, 

U2,U3 £ {u,0(u)}, vi — v, v2, • • •, vn, vn+\ G {v,9(v)} satisfying Condition (5.3), 

then one of the following two cases holds: 

1. u2 — 0(u) and vi — • • • — vn_i = v; 

2. u2 = u, vi = • • • = v\n/2-\-\ = v, and Uf„/2i+i = • • • = vn-X = 0(v). 

Proof. Let us consider the case when u2 =• 9{u) first. In this case, we have u6(u) = 

v\ • • -vn-iw, where w is a non-empty prefix of vn. Since u9(u) is a ^-palindrome, 

vi • • • vn-iw — 9(w)9(vn-i) • • • 9(vi) holds. This means that 9{vn-\) • • • 9{vi) is a 

proper infix of v\ • • -vn. Then we can apply Theorem 5.5 to conclude 9(vn-i) = 

• • • = 9{v\) because v is assumed to be ^-primitive. 

Even for the second case when u2 = u, the basic strategy is the same. Since the 

border between ui and u2 is located on U[n/2], one can let v\n/2-\ = xy for some non­

empty words x, y such that ui = v\ • • • v\nj2-\-\X and u2 = yv\n/2]+i • • • vn-iz, where 

z is a non-empty prefix of vn. Then we have v\ • • -v^^-ix = yv^n/i\+\ • • -vn-\z 

because ui = u2. This equation implies that vx • • • U[n/2i-i is a proper infix of 

v\n/2'\ • • 'vn so that v\ = ' • • = Ufn/2"|-i = v- If n > 4, we can also determine the 

values of U[n/2]+i, • • •, vn-i. Firstly, the value of W[n/2]+i is determined to be 9{v) by 

applying Lemma 5.4 to the overlap between v\v2 and /y|-„/2]f[n/2l+i- When n > 6, 

Theorem 5.5 is applied to that U[n/2i+i • • • vn-x being a proper infix of v\ • • • Ufn/2] to 

fix wrn/2]+i = • • • = vn-i = 9(v). U 
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As suggested previously, an element of BCPg(u, v) is characterized by Condi­

tion (5.3) with k — \v\ — gcd(|u|, \v\) — [gcd(|u|, M)/2j — 1. Thus, this condition is 

replaced by the next condition: 

\uiu2u3 Avi---vnvn+1\ > 2\u\ + \v\ -gcd(|w|, \v\) 
gcd(|u|, |w|) 

1. (5.4) 

Once this inequality proves not to hold strictly, b'(p, q) becomes a good bound for 

an arbitrary pair (p, q). The next lemma verifies that the assumption of u,v being 

^-primitive is valid when we consider BCPg(u, v). 

Lemma 5.15. Let u, v 6 S + such that pg{u) ̂  Pe{v) and \u\ > \v\ > 3gcd(|u|, \v\). 

Unless both u and v are O-primitive, BCPe(u, v) = 0. 

Proof. Here we prove its contrapositive: if BCP$(u, v) ^ 0, then both u and v are 

^-primitive. For this purpose, suppose the non-emptiness and that u and v were 

not ^-primitive at the same time, and see that a contradiction is unavoidable. Let 

r = pe{u), t = pe(v), d — gcd(|u|, \v\), and d! = gcd(|r|, \t\). It suffices to show that 

6(max(|r|, |£|),min(|r|, \t\)) < b'(\u\, \v\) — 1 under this supposition, which would lead 

us to the contradictive conclusion pg{u) = pe(v) due to Theorem 5.8. 

If min(|r|, \t\) < 2d', then by definition 6(max(|r|, |t|), min(|r|, |i|)) = lcm(|r|, \t\), 

and we have lcm(|r|, \t\) < 2max(|r|, \t\) < 2\u\ < b'(\u\, \v\) — 1. 
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In the case min(|r|, |i|) > 3d', we claim that 

2max(|r|, |*|) + min(|r|, \t\) - d' < b'(\u\, \v\) - 1 (5.5) 

holds if r ^ u or t ^ v. To prove this claim, it is worth noting that |i| < \u\ — d 

holds because |i| < \v\ and \v\ < \u\ — d. Firstly, let us consider the case \r\ > \t\. If 

r ^ u, then one easily obtains 2\r\ + |t| — d' < 2\u\ < b'{\u\, \v\) — 1 because r ^ u 

means 2\r\ < \u\. This inequality is exactly same as (5.5) when \r\ > \t\. If r = u, 

then t 7̂  v so that |i| < \v\/2 < \v\ — d — \d/2\ holds; the latter inequality follows 

from \v\ > 3d. Thus, \t\ — d' < \t\ — 1 < \v\ — d — [d/2\ — 1, and hence, we have 

2\r\ + \t\ — d' < b'(\u\, \v\) — 1. Conversely if \r\ < \t\, then \r\ < \v\ holds. Due to 

the inequality: 

2\u\ + \v\ - 2d < 2\u\ + \v\-d- [d/2\ - 1, (5.6) 

we have 2\t\ + \r\ - d! < 2{\u\ - d) + \v\ - d! < 2\u\ + \v\ -2d< V(\u\, \v\) - 1. This 

is the same as (5.5) when \r\ < \t\. Having proved the claim, now it suffices to note 

that the left-hand side of (5.5) is equivalent to 6(max(|r|, |i|),min(|r|, \t\)). • 

Note that the inequality given in Eq. (5.6) will play a significant role throughout 

this paper. 

Up to now, we have seen that the combinations of the values of ui, u3, V2, • • •, vn+\ 

have been already severely-limited under the condition (5.3) due to Lemma 5.14. 
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We will see in the following that some specific value of k in this condition further 

restricts the number of possible combinations. 

Proposition 5.16 ([8]). Letu,v 6 E+ such that v is 9-primitive, 112,113 G {u,9(u)}, 

and v2,...,vn € {v, 9(v)} for some integer n > 3. / / vv2 • • -vn is a prefix of uu2uz 

and (n — l)\v\ < 2\u\ < n\v\, then there are only two cases possible: 

1. u2 = 0(u) and v2 — • • • = vn = v with u6(u) — (yx)n~ly and v = yx for some 

non-empty 6-palindromes x, y; and 

2. u2 = u, n is even, v2 — • • • = vn/2 = v, and vn/2+i = • • • — vn = 0(v) 

with v = r(tr)l(rty+:>r and u — vnl2~lr(tr)l(rt)] for some i > 0, j > 1, and 

non-empty 6-palindromes r, t. 

This proposition is applicable to our problem when v\ • • • vn is a prefix of u\u2uz, 

that is, when the border between vn and vn+i is at the left of the vertical dashed 

line in Figure 5.3. Since 2|tt| — (n — l)|u| is a multiple of gcd(|w|, \v\), this condition 

is formalized as 2\u\ — (n — l)\v\ > 2gcd(|«|, \v\). This always holds when n is 

odd because \u\ — rLYL\v\ is a multiple of gcd(|u|, \v\). On the contrary, 2\u\ — (n — 

l)\v\ — gcd(|u|, \v\) may hold when n is even. Then v\ • • -vn disagrees with uiu2u$ 

somewhere within the ([gcd(|«|, |v|)/2j + 1) rightmost letters of vn, as shown in the 

next example. 

Example 15. Let u = abbab, v — abb, and 9 be the mirror image on {a, b}. Then 

u9(u)2 and i>4 satisfy Condition (5.4), with n = 4, and 2|tt| —(n —l)|u| = gcd(|u|, \v\). 
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Lemma 5.17 ([8]). Let v G S + be a 9-primitive word, and x,y G E + be words 

strictly shorter than v. For an integer k > 1, the solution to v9(v)kx = yvk+l is 

characterized as v — r(tr)%(rt)%+:ir, y — r(try(rt)J, and x = (rt)l+}r for some i > 0, 

j > 1, and non-empty 6-palindromes r,t. 

Lemma 5.18. Let u,v be distinct 9-primitive words with \u\ > \v\ > 3gcd(|u|, \v\). 

If there exist an integer n, and words u\ = u, u2, U3 G {u, 9(u)}, Vi = v, i>2, • • •, vn: vn+i € 

{v,9(v)} satisfying Condition (5.4) and 2\u\ — (n — l)\v\ = gcd(|u|, \v\), then U2 — 

9{u) and V2 = • • • = vn = v. Moreover, v = yx and u9{u) = (yx)n~ly for some 

9-palindromes y,x G S + . 

Proof. Let d = gcdd^l, \v\). As mentioned previously, in order for 2\u\ — (n — l)\v\ = 

d to hold, n has to be even. So, let n — 2(m 4-1) for some m > 1. 

Firstly, we investigate the case when tx2 = 9(u). In this case, Lemma 5.14 fixes 

all of v2, • • •, V2m-i to be equal to v±, i.e., v. Then we can let 

Ulu2 - u9(u) = v2m+1y (5.7) 

for some y € Pref (u2m+2)- From Eq. (5.7) and the hypothesis of this lemma, \y\ = 

2\u\ — (2m + l) |v| = d. Combining this relation and Condition (5.4) implies that 

yus and U2m+2 share their prefix of length at least \v\ — d. At any rate, since 

u9(u) is a ^-palindrome, Eq. (5.7) gives v2m+1y = 9(y)9(v)2m+1. This means that 

vy G Suff(9(v)2) because m > 1, and this suffix condition allows us to let 9(v) = xy 
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u2 = 9{u) 

Vm+1 = V V2m+2 = 0{v) 

!T x "! ty=fWzT$ 
i t / i I I 1..1 ' ; ' 

0(u) 0(v) 9(v) 9{z) V z 

Figure 5.4: When u3 = 0(u) and \y\ — d, V2m+2 = 0(v) and the prefix 9(z)yz of 0(it) 
partially overlap as shown here. 

for some x G S + . Substituting this back to the suffix condition results in 0(y)9(x)y G 

Suff(xyxy). From this, we can easily observe that y = 9{y) and x — 9{x). Now we 

have v — yx. Note that the relation (2m + 2)\v\ — 2\u\ — \x\ results from this 

equation and Eq. (5.7) so that £ is a ^-palindrome of even length; that is, we can 

let x = z9(z) for some z G S + . Hence, v — yz9(z), and by substituting this into 

Eq. (5.7), we can obtain that 

u = vmyz = (yx)myz = (yz9(z))myz. (5.8) 

According to this equation, the Euclidean algorithm gives d — gcd(|u|, |i>|) = gcd(|u|, | 

\z\) = gcd(|y| + \z\, \z\) = gcd(|z|, \y\). This equation further implies gcd(|a:|, \y\) = 

gcd(2|z|, |y|) = d because \y\ = d. 

From now on, we will prove that «2m+2 has to be v. Suppose not, that is, 

2̂m+2 = 9{v) = xy. Recall that yu$ and V2m+2 share their prefix of length at least 

|x| + |j/ | — d. In addition, |x| + |j/ | — d> 2d according to the hypothesis \v\ > 3d. Thus, 

if \z\ = d, then this common prefix immediately gives z = y, and hence, v would be 
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y3. This contradicts the 0-primitivity of v so that z has to be of length at least 2d. If 

U3 = u, then yus = y(yx)myz holds due to Eq. (5.8), and hence, this common prefix 

implies that yyx and xy share their prefix of length \x\ + \y\ — d. As seen above, 

gcd(|x|, \y\) — d and \v\ — \yx\ > 3d. Thus, Lemma 5.3 is applicable to this common 

prefix, and results in p(x) = p(y). This, however, contradicts pe(u) ^ Pe(v), and 

hence, u3 has to be 9{u) = 9(z)y(z9(z)y)m. See Figure 5.4. In this case, the common 

prefix between i>2m+2 a n d Vu3 gives 

z9(z) = y9(z)yz' (5.9) 

for some z' <E Pref(z). Eq. (5.9) implies that z' 6 Suff(0(z)), i.e., 9(z') e Pref(z), 

so that z' — 9{z'). Eq. (5.9) also enables us to let z = yz" for some z" e S*. 

Substituting 9(z) — 9{z")y back into Eq. (5.9) yields z9(z) = y9(z")y2z', and hence, 

9(z) — V2z'i i-e-> z — z'y2- If \z\ — 2d, then z' = A; otherwise, by replacing 

Eq. (5.9) by these, we can obtain z'y2y2z' = y3z'yz', and hence, z'y3 = y3z', which 

implies p(z') — p(y). However, in both cases, we reach the contradiction with the 

0-primitivity of v — yz'y2y2z'. 

Now we have to prove that «2 cannot be u. Suppose for the sake of contradiction 

that u2 = u. Lemma 5.14 gives v\ = • • • = vm = v and vm+2 = • • • = v2m+i = 9(v). 

So, 

u = vmz = x9{v)mz' (5.10) 
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Vm+l Vm+2 ^2m+l !^2m+2 

I x ; y i : 

" 1 = U «m+l 

Figure 5.5: If u-i — u, then v\V<i... vm+\ overlaps with vm+\... v^m+i not depending 
on the value of u%. 

for some z,x,z' G S + such that vm+\ — zx. Since m > 1, this allows us to let 

v = xy for some y e Pref(0(u)) (see Figure 5.5). Substituting this into Eq. (5.10) 

gives y — 9(y). Eq. (5.10) also gives \x\ — (m+l)\v\ — \u\, and by combining this with 

the hypothesis (2ra+l)|u| < 2\u\ < (2m+2)|w|, we obtain 2\x\ — (2m+2)|v| — 2|u| < 

\v\ = \x\ + \y\, and hence, \x\ < \y\. As done before, based on u = vmz and \z\ = |y|, 

the Euclidean algorithm gives d = gcd(|it|, \v|) = gcd(|x|, |y|). Thus, \x\ < \y\ 

implies that \y\ > 2d. With Eq. (5.10), this length condition results in 

(m + l)\v\ = \u\ + \x\ < \u\ + \x\ + \y\ - 2d. (5.11) 

For our purpose, it suffices to prove that vm+i can be neither v or 9{v). Suppose 

first that vm+\ = 9(v) — yx. First of all, we can easily see that z = y because vm+i 

was let to be zx. Thus, Eq. (5.10) can be rewritten as u = vmy. As illustrated 

in Figure 5.5, the overlap between i>2m+i = Q{v) a n d fm+i = &{v) implies that 

x € Pref(0(v)). This implies x G Pref(y), i.e., 9{x) 6 Suff(y), because 9(v) = yx 

and |a;| < \y\. As a result, 9(x) £ Suff(u), and hence, or is a prefix of both u and 9(u). 
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This means that vm9(v) £ Pref(u«3) regardless of whether ^3 is u or 9(u). Note that, 

by the hypothesis, U2U3 = uu^ and xvm+2 • • • V2m+iv2m+2 share their prefix of length 

at least \u\ + \v\ — 2d. Due to Condition (5.11), vm9(v) £ Pref(xvm+2 • • • 1^+2), that 

is, vm9(v) is an infix of um+i • • • 2̂m+2- However, since m > 1 and v is primitive, 

this contradicts Theorem 5.5. Thus, vm+i cannot be 6{v) so that has to be v. If so, 

applying Lemma 5.17 to the overlap between v\ • • • vm+\ and vm+i • • • i>2m+i yields 

v = r(tr)l(rt)l+3r and u — vmr{tr)t{rt):) for some i > 0, j > 1, and non-empty 

0-palindromes r, t. One can easily check that u2 — vm+19(v)m(rty holds, and hence, 

\(rty\ — d due to 2\u\ — (2m + l)\v\ — d. On the contrary, from gcd(|u|, \v\) = d, 

the Euclidean algorithm derives gcd(|r(ir)8|, |(ri)J|) = d. However, |r(ir) l | cannot 

be a multiple of | (rt)3 \ = d because r, t ^ A. D 

Lemma 5.19. Let u,v be distinct 9-primitive words with \u\ > \v\ > 3gcd(|u|, \v\). 

If there exist an integer n, words Ui,U2,us € {u,9(u)}, and vi,...,vn,vn+i G 

{v,9(v)} satisfying Condition (5.4), then u2 — u3. 

Proof. Let d — gcd(|u|, \v\). We will consider two cases depending on whether w2 is 

9(u) or u, and will prove that w3 has to be equal to u2-

The first case is when u2 — 9(u). In this case, Proposition 5.16 and Lemma 5.18 

imply that v2 — • • • — vn — v, v = yx and u9(u) = (yx)n~ly for some non-empty 

^-palindromes x,y. The Euclidean algorithm yields gcd(2|«|, \v\) = gcd(|y|, \v\) — 

gcd(|a;|, \y\), and hence, gcd(|a;|, |y|) is either d or 2d because d — gcd(|u|, \v\). Sup-
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pose U3 — u. This means that U3 starts with yx, and hence, yx and xvn+\ share 

their prefix of length at least \x\ + \y\ — d — \d/2\ — 1. If \x\ + \y\ = 2gcd([rc|, |y|), 

then |x| = \y\ — d or \x\ — \y\ = 2d, but indeed only the latter is valid under the 

assumption \v\ — \x\ + \y\ > 3d. This means that the common prefix is of length at 

least I a; J so that it implies x = y, which however contradicts the 0-primitivity of v. 

Conversely, if \x\ + \y\ > 3gcd(|x|, \y\), then \x\ + \y\ — d— [d/2\ — 1 > |x| + \y\ — 2d> 

\x\ + \y\ — 2gcd(|a;|, |y|) (here d < gcd(|x|, \y\) is used). Since vn+i is either v = yx 

or 9{v) — xy, Lemma 5.3 is applicable to the common prefix to obtain p(x) = p{y). 

Now that we have reached the same contradiction, we can conclude that the only 

possible choice of U3 is 9{u). 

The next case is when u2 = u. Due to Proposition 5.16 and Lemma 5.18, n is even 

(n = Ira + 2 for some m > 1), v2 — • • • — vm+i = v and i>m+2 = • • • = «2m+2 — 6{v), 

with v = r(trY(rty+Jr and u = vmr(tr)l(rt)3 for some i > 0, j > 1, and non-empty 

(9-palindromes r, t. Then we have vm+l6(v)m+1 = uu(rt)lr{rt)lr. The Euclidean 

algorithm derives gcd(|(rt) 'r | , \{tr)3\) = d from gcd(|u|, \v\) = d. Note that \u3 A 

{rt)lr{rt)lrv2m+z\ = \v\-d- [d/2\ - 1 > |v| - 2d > \v\ - 2\r{tr)l\ = \(try\ > \rt\. 

Consequently 1*3 must not begin with t in light of Proposition 5.1, and hence, 113 

cannot be 9(u). • 

Now we are ready to prove that b'(p,q) is an improved bound for the extended 

Fine and Wilf's theorem. Recall Eq. (5.6), which makes it possible to distinguish 
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the cases in which boundary common prefixes are constructable. 

Theorem 5.20. Let u,v G E+ with p$(u) ^ Peiy) and \u\ > \v\ > 3gcd(|u|, \v\). 

Then the length of a word in BCPg(u, v) is 2|u| + |v|—gcd(|u|, \v\)— [gcd(|u|, |w|)/2j — 

1. Moreover, BCPg(u, v) ^ 0 if and only if one of the following two cases holds: for 

some m>l,i>0, and (a, @) G 7\ U T2 U T3 and 

1. u = {aP(PaYP)maP, v = a(3(Pa)iP; 

2. u = [a(Pa)l(ap)l+la]ma(PayaP, v = a{Pa)l(aP)l+1a. 

Proof. Let d = gcd(|it|, \v\) and assume that BCP$(u, v) is not empty. Then Lemma 5.15 

implies that both u and v are ^-primitive. Since an element of BCPg(u, v) is charac­

terized by Condition (5.4), Proposition 5.16, Lemmas 5.18 and 5.19 leave only two 

cases to be investigated: 

1. u2 — u^ — 0(u), v2 = • • • = vn — v, v — yx, and u6{u) = vn~1y for some 

non-empty distinct ^-palindromes x,y; and 

2. U2 = u^ = u, n = Ira + 2 for some vn > 1, V2 = • • • = fm+i = v-> vm+2 = • • • = 

2̂m+2 = 9{y), v — r(trY(rty+Jr, and u — vmr{tr)x{rt)3 for some i > 0, j > 1, 

and non-empty distinct ^-palindromes r, t. 

Case 1: In this case, the parity of n matters so that we first consider the subcase 

when n is odd (see Figure 5.6). Then the border between U\ and u2 splits the prefix 

y of V(n+i)/2 into half. Hence, we can let y — z'9(z') for some z' G E+ and u = 
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I * ma') , ̂ ^y^g. 
% ) *(«) u3 = 6{u) 

Figure 5.6: For an odd n, u9{u)2 and vnvn+i share the common prefix of length 
2\u\ + \v\ — d — \_d/2\ — 1, where d = gcd(|u|, |v|). 

vn+i = 9(v) 

Figure 5.7: When n is odd and \x\ < \z'\, u2U3 and vnvn+\ overlap as shown here. 

v{
n-l)l2

z'. The Euclidean algorithm derives gcd(|z'|, \x\) — d from gcd(|u|, \v\) = d. 

Focus to the right of border between u<i and U3. The rightmost dashed line in 

Figure 5.6, up to which Uiu2^3 agree with v\v2 • • -vn+i, is located on vn+\ because 

\y\ — 2\z'\ > 2d. Thus, the suffix x of vn is a prefix of the prefix 9(z')x of u3. So, if 

z' were of length d, then due to this prefix relation and d = gcd(|z'|, |x|), x would be 

a power of 9(z'), which contradicts the 0-primitivity of v. Therefore, z' has to be of 

length at least 2d. This means that the rightmost vertical dashed line in Figure 5.6 

is on z' of the prefix 9(z')xz' of U3 = 9(u), and hence, 9{z')x e Pref(xt;n+i). 

In what follows, we prove that in this subcase BCP<?(u, v) ^ 0 requires vn+i = v 

and \z'\ = 2d. For the sake of contradiction, suppose that vn+i were 9{v) = xz'9{z'). 
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Then the prefix relation just mentioned is written as 

9{z')x G Pref(xx z'9(z')). (5.12) 

First of all, \z'\ > \x\ has to hold because otherwise Relation (5.12) would cause 

9(z')x G Pref(:r2), that is, p(z') = p(x) due to Proposition 5.1, which contradicts 

the 0-primitivity of v. With this condition, Relation (5.12) gives x2 G Prei(9(z')x). 

If \z'\ = 2d (i.e. |a:| = d), then this prefix relation would result in 9{z') = x2 and 

lead us to the same contradiction. Otherwise (\z'\ > 3d), as illustrated in Figure 5.7, 

pref|2/|_2d(^') G Pref(x8(z')). Substituting this into the overlap between 6{z')x and 

xxz' implies either O(z') G Prei(x39(z')) if \x\ = d; or 9{z')x G Pref(x39(z')) oth­

erwise. In the former case, 9(z') would be a power of x, whereas in the latter case 

Proposition 5.1 would imply p(9(z')) = p(x). At any rate, we face the contradiction 

against the 0-primitivity of v. Consequently, vn+i has to be v. Then the prefix 

relation 9(z')x G Prei(xvn+i) is rather equal to 9(z')x G Pvei(xz'9(z')x), and we can 

immediately see that 9{z')x = xz'. This is a well-known conjugacy equation and 

can be solved as 

9(z') =rt,x = r(tr)k, z' = tr (5.13) 

for some k > 0 and words r, t (see, e.g., [5]). The resulting equation z' = tr implies 

9(z') — 9(r)9(t) and combining this with 9(z') = rt results in r = 9{r) and t = 9(t). 

These r, t have to be distinct and non-empty in light of the #-primitivity of v. 
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u 9{u) \x\ + \y\-d-\d/2\ 

x 

zO{z)\ - ( - = = 

- 1 

S'J( z)yz9{z) 

0(v) 9(v) 9(v) u3 = 9(u) 

Figure 5.8: For an even n, u9(u)2 and vnvn+i share the common prefix of length 
2\u\ + \v\ — d— \_d/2\, where d = gcd(|w|, \v\). 

Next we prove that, under the assumption vn+i = v, \z'\ has to be 2d. By 

applying Euclidean algorithm to Eq. (5.13), we can obtain d = gcd(|z'|, \x\) = 

gcd(|r|, \t\). Recall that xvn+i(= xz'9(z')x) and 9(z')xz' share a prefix of length 

at least \9(z')xz'\ — 2d. Removing the trivial common part xz' = 9(z')x from this 

prefix leaves us \9(z') A z'\ > \z'\ - 2d, that is, \rt A tr\ > \rt\ — 2d. So if \z'\ > 

3d, then Lemma 5.3 could be employed to give p(r) = p(t), which would lead us 

to the contradiction with the 0-primitivity of v. Having successfully proved that 

|z'| — 2d, let us construct a boundary common prefix based on u and v. Based 

on the presentations of x and z' in Eq. (5.13), we can see v = tr(rt)k+1r and 

u = v^'^^tr. Due to z' — 2d and d = gcd(|r|, \t\), we have \t\ = \r\ = d. By 

replacing (t, r) with (a, P) € 7\ U T2 U T3, we can get the first pair of presentations 

of u and v shown in the statement with i > 1. It is left to the readers to check that 

\u9{uf A vn+1\ = 2\u\ + \v\-d- [d/2\ - 1. 

The second subcase of Case 1 (u3 = 9{u)) is when n is even. Recall that x, y are 

^-palindromes. In this subcase, x can be rather written as x = z9(z) for some z e S + 
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(see Figure 5.8). As done before, one can obtain gcd(|y|, \z\) = d from gcd(|u|, \v\) = 

d. The overlap between vn and u$ gives z = 6{z). Note that vnvn+\ = yz2v„+i and 

2/U3 = y2?/22 share their prefix of length at least \y\ + \x\ + \y\ — d— [d/2\ — 1. Hence, 

after reducing their common prefix yz, still zvn+i and yz2 share their prefix of length 

at least \y\ + \z\ — 2d. Since vn+i G {y ,2} + , if \yz\ > 3d, then due to Lemma 5.3 

this common prefix would give p(y) = p(z) and we have reached the contradiction. 

Thus, yz has to be of length 2d, i.e., \y\ = \z\ = d. Then by replacing (y, z) with 

(a, /3) G T1UT2UT3, we obtain the first pair of presentations ofu,v in the statement 

with i = 0. The boundary common prefix based on u and v is constructed in the 

same manner as previous case. 

(Case 2): Let us remind ourselves of the case: "u2 — U3 = u, n = 2m + 2 for some 

m > 1, v2 = • • • = vm+i ~ v, vm+2 = ••• = v2m+2 = 0{v), v = r(tr)l(rt)l+3r, and 

u = vmr(try(rt)3 for some i > 0, j > 1, and non-empty distinct ^-palindromes r,t". 

Note that the following equations hold: 

u2 = vm+1e(v)m(rty, (5.14) 

u3 = wm + 10(?;)m + 1( t r )^m- 1r( t r ) 8(r i ) J . (5.15) 

Due to Lemma 5.18, if 2|it| — (2m + l) |v | = d, then u2 = 0(u). Since now we assume 

that u2 = u, 2\u\ — (2m + l)|i>| > 2d must hold. Combining this with Eq. (5.14) 

implies I (ri)'I > 2d. With Eq. (5.15), this gives | ( i r )Mv 2 m + 3 | > \(try\-d-[d/2\-l. 
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Note that ^2m+3 begins with r regardless of whether it is v or 9(v). 

The Euclidean algorithm derives gcd(|r(tr) l | , |(£r)J|) = d from gcd(|u|, \v\) — d. 

Let \{tr)3\ — kd for some k > 2. Here we shall see that unless j = 1, we could not 

avoid a contradiction. Suppose j > 2. If k > 4, then \tr\ < ^\(tr)3\ < \(tr)3\ — 2d. 

Thus, Ktr)3 A 2̂m+31 > l^ii a n d Proposition 5.1 is applicable to this overlap to 

yield p(r) = p(t). However, this contradicts the 0-primitivity of v. The same 

argument works for k = 3 and j > 3. If k — 3 and j = 2, then \trtr\ = 3d. The 

Euclidean algorithm gives either gcd(|r | ,2|i |) = d (if i is even) or gcd(2|r|, |i|) = d 

(otherwise). Combining these with \trtr\ — 3d gives either \r\ = 2\t\ = d (if i is even) 

or 2|r| = ]i| = d (otherwise). The overlap between (tr)J and t>2m+3 is of length at 

least d, which is long enough to get r — t2 (if i is even) or t = r2 (otherwise.) In either 

case, we cannot accept such a conclusion in light of the 0-primitivity of v. As a result, 

the remaining case is k = 2, i.e., \(try\ — 2d. Then gcd(|r(£r)*|, ((tr)7!) = d gives 

gcd( | r( ir)8 m o d^| , | ( t r) J | ) = d, and further gcd( | r ( i r ) j m o d ' \ , \(trY~lmod^-H\) = d. 

This means that \r(trYmodj\ = |(ir)'~ jmod-?^~1i| = d because they are properly 

shorter than l(ir)-71 = 2d. This further implies i mod j = (—i mod j) — l and \r\ = |i |. 

Hence, j has to be odd, i.e., j > 3. With the non-emptiness of r and t, \(tr)J\ = 2d 

now implies d > 3. As a result, \(tr)3 A V2m+3| = d — \_d/2\ — 1 > d/j = \t\ = \r\, 

and thus t = r, the same contradiction. 

Consequently, the only one possible value of j which may create a boundary 

common prefix is 1. Then the Euclidean algorithm yields gcd(|r|, \t\) = d from 
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gcd(|r(£r)*|, \tr\) = d. If \tr\ > 3d, then \tr Av2m+3\ > \tr\ — 2d and the contradictory 

result p(r) = p(t) would be obtained by Lemma 5.3. Thus, only the case \tr\ = 2d, 

that is, |i| = \r\ = d remains valid. Actually in this case, substituting (a, fi) € 

Ti U T2 U T3 for (r, t) results in the second pair of presentations of (u, v) in the 

statement. One can easily check that \u3Avm+10(v)m+1a\ = 2\u\ + \v\—d—[d/2\ — l; 

note that a is a prefix of v2m+3 not depending on whether it is v or 9(v). • 

Corollary 5.21. |BCP#(u,v)\ < 1 for any u,v € E + with pe{u) ^ pe{v) and 

\u\ > \v\ > 3gcd(|w|, \v\). 

Proof. As shown in the proof of Theorem 5.20, once u and v are given in one of 

the presentations present there, there is only one way to construct an element of 

BCP<?(u, v). Furthermore, v is of length gcd(|u|, \v\) times an odd number in the first 

presentation, whereas is of length gcd(|u|, \v\) times an even number in the second 

one. • 

5.3.3 The improved bound and its optimality 

Combining Proposition 5.9 and Theorem 5.20 completes our proof of the improved 

bound for the extended Fine and Wilf's theorem. 

Theorem 5.22. Letu,v € E + with \u\ > \v\ > 2gcd(|u|, \v\). If a 9-power of u and 

a 9-power of v share a prefix of length b'{\u\, \v\), then pe(u) = pe(v). 

As opposed to the result mentioned in Theorem 5.11, b'(p,q) is not optimal for 
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all (p, q) with p > q > 3gcd(p, q). The presentations of u, v given in Theorem 5.20 

make it possible to distinguish the non-optimal cases from the optimal cases. 

Corollary 5.23. Forp,q with d = gcd(p, q) and p > q > 3d, b'(p,q) is optimal for 

(p, q) if and only if (p/d, q/d) is either (m(2i + 3) + 2,1i + 3) or (4m(i + 1) + 2i + 

3,4(i + 1)) for some m > 1 and i > 0. 

Recall that the bound given by the classical Fine and Wilf's theorem is strongly 

optimal, i.e., for an arbitrary pair (p, q), there exists a word of length p + q — 

gcd(p, q) — 1 with periods p, q but without gcd(p, q) as its period; furthermore if p 

and q are coprime, then such a word is unique up to letter renaming In contrast, 

the bound b'(p,q) is not strongly optimal. Indeed, Corollary 5.23 says that there do 

not exist u, v of respective lengths 9,5 with BCPg(u, v) ^ 0. On the other hand, we 

can obtain an analogous result about the uniqueness of boundary common prefixes 

based on words of coprime lengths up to letter-renaming. For this purpose, let us 

construct all the boundary common prefixes according to Theorem 5.20 as well as 

its proof. The first presentation of u, v in this theorem is u = (a/3(/3ayf3)maP and 

v = a/3(/3aY/3 for some m > 1, i > 0, and (a, /5) G 7i U T2 U T3. The proof of this 

theorem says that the only boundary common prefix which can be generated based 

on u and v is the maximal common prefix between u6(u)2 and vnvn+i, which is 

(aP(Payp)2m+lal3x, (5.16) 
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where x is the maximal common prefix between a and j3 (see the definition of 

Ti, T2,T3). In the similar fashion, for the second presentation in the theorem u = 

(a(Pay{aP)l+la)ma{Pa)laP and v = a(Pa)l(aP)l+la, u3Avm+1e(v)m+1v2m+3 is the 

only boundary common prefix constructable from u and v, and it is: 

(a(0ay(aP)t+1a)^l{a(Pay+1-(aPya)m+1x, (5.17) 

where x is the maximal common prefix between a and /3. Note that both presenta­

tions ofu,v admit that gcd(|u|, \v\) = gcd(|a|, \/3\) — \a\ = \/3\ due to the Euclidean 

algorithm. Therefore, all the boundary common prefixes which verify the optimality 

of b'(p, q) for all the coprime pairs (p, q) for which b'(p, q) is optimal can be obtained 

by choosing (a,/3) in Eq. (5.16) and in Eq. (5.17) from 

(E x E) n (Ti U T2 U T3) = {(a, b) \ a, b e E, a ^ 6, a = 0(a), 6 = 5(6)}. 

Consequently, for pairs of coprime integers, the next result holds, which is analogous 

to the uniqueness result just mentioned. 

Corollary 5.24. Let (p, q) be a pair of coprime integers with p > q. Then all the 

boundary common prefixes based on words of respective lengths p, q are equal up to 

renaming. 

Note that this uniqueness result does not hold any more once the coprime as-
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sumption is taken out. This is because the choice of x in Eq. (5.16) and in Eq. (5.17) 

is arbitrary and also even if gcd(p, q) — 2, there are two choices about (a, /5) from 

T2 or from T3. 

We conclude this section by defining two respective sets of boundary common 

prefixes thus obtained from Eq. (5.16) and Eq. (5.17) by limiting the choice of (a, /3) 

only from (S x £)n(Ti UT2UT3). Due to the uniqueness mentioned in Corollary 5.24, 

we can set a — a and j3 — b without loss of generality. As such, these sets are rather 

defined as: 

So = {{ab{bafb)2m+1ab \ i > 0,m > 1} 

Se = {(a(bay{aby+1a)m+x(a{bay+1(abya)
m+x \ i > 0,m > 1}. 

The aim of the next section is to discuss the relationship between the words in S0USe 

and Sturmian words. 

5.4 Sturmian words 

It is known that for an arbitrary pair of integers (p, q) with p > q > gcd(p, q), there 

is a word of length p + q — gcd(p, q) — 1 which has p, q as its periods but gcd(p, q) 

is not its period, and hence, the bound p + q — gcd(p, q) for the Fine and Wilf's 

theorem is strongly optimal. Furthermore, all of these words can be constructed 



www.manaraa.com

184 

based on a (binary) word with two coprime periods p, q whose length is p + q — 2. 

It is known that the set of all such basic words, denoted by PER, is closely related 

to Sturmian words. (Infinite) Sturmian words are (one-sided) infinite words which 

are not ultimately-periodic, and whose number of factors of length n is minimal 

(n + 1) for any n > 1. Finite Sturmian words are any factors of an infinite Sturmian 

word. Let St be the set of finite Sturmian words. By F(w) we denote the set of 

all infixes (factors) of w and we can extend this notation to the set of words L as 

F(L) = \JW£LF(W)- d e L u c a a n d Mignosi proved in [11] that St = F(PER), that 

is, a binary word with two coprime periods whose length is the sum of these two 

periods minus 2 is a finite Sturmian word. 

The aim of this section is to characterize S0 and Se, which correspond to PER 

for the optimal bound of Fine and Wilf's theorem, by finite Sturmian words. 

A finite Sturmian word is called standard if it appears as an intermediate product 

(see Definition 1) when constructing an infinite Sturmian word using a procedure 

called standard method. 

Definition 1 ([11]). Let S = {a, b}. The infinite sequence of pairs of words (An, Bn), 

n > 0, is constructed in the following manner. Set (A0, B0) = (a, b). For any n > 0, 

the pair (An+i, Bn+x) is obtained from (An,Bn) by using one of the following two 

rules: 

1. (An+1,Bn+1) = (An,AnBn),oi 
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2- (An+i,Bn+i) = (BnAn,Bn). 

The elements of {An, Bn \ n > 0} are the standard finite Sturmian words. 

A property, called R in [11], plays an important role here. A word w G S + is 

said to satisfy R if there exist palindromes x, y, z such that w = zab = xy. It was 

proved that a word with the property R is a standard Sturmian word. 

Proposit ion 5.25 ([11]). / / a word has the property R, then it is a standard Stur­

mian word. 

Lemma 5.26. For a word w in Se, the words wab and wba satisfy R. 

Proof. Let w = {(ab)1 a(ab)i+1a)m+1 (a(6a)J+1 a(ba)l)m+l for some i > 0 and m > 1. 

Since any word in Se is a palindrome, it is enough, for our purpose, to show that wab 

is a product of two palindromes. In fact, wab can be split into ((abya(ab)l+1a)m+1a(ba)z 

and baa(bay(a(bay+1a(ba)l)mab, which are palindromes. Thus, wab satisfies R. In 

the same fashion, wba — {{ab)%a{abyJrla)m{ab)%a • (a6) l+1a(a(6a) l+1a(6a) l)m+16a, and 

hence, wba satisfies R. • 

Corollary 5.27. For a word w in Se, wab and wba are standard Sturmian words. 

Thus, we can see that all words in Se are finite Sturmian words. Combining 

Lemma 5.26 with the following result obtained in [11], which relates a word with 

the property R with PER, we can obtain a stronger result than this. 
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Lemma 5.28 ([11]). Let u — zab = xy for some palindromes x,y,z. If z contains 

at least two letters, then z has the periods p = |x| + 2 and q — \y\ — 2 such that 

gcd(p,q) = 1. 

Corollary 5.29. Se C PER. 

Having considered Se, now we turn our attention to S0- In a similar manner as 

above, we can prove that any element of S0 is a finite Sturmian word. 

Lemma 5.30. For a word w in S0, there exists a word u G T,+ such that uw has 

the property R. 

Proof. Let w = {ab{ba)%b)mab for some i > 0 and m > 1. When i — 0, let u = bb. 

Then uw = bb(abb)mab. Since bb{abb)m is a palindrome and uw can be written as a 

product of b and (bab)m+1, uw satisfies R. 

When i > 1, let u = (baf^b so that uw = {ba)%-lb(abba{ba)l'1b)mab. Note that 

MID has as prefix of length \uw\ — 2 a ^-palindrome, and of length \uw\ — 2, and it can 

be split into two palindromes {ba)%~lbab and 6a(6a)2_16(a66a(6a)*_16)m_1a6. Thus, 

we can say that uw has the property R. D 

Corollary 5.31. Words in S0 are finite Sturmian words. 

Now we know that all the words in Se U S0 are finite Sturmian words. We shall 

differentiate these two sets with respect to PER. Recall that any element of Se is 

included in PER (Corollary 5.29). On the contrary, SQ and PER are disjoint. This 
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St = F(PER) 

Figure 5.9: The set St of finite Sturmian words, PER, Se, and S0 

is because an element of PER has been proved to be a palindrome [11], while any 

element of S0 is not. 

Proposition 5.32. S0 H PER = 0. 

To summarize this discussion, Figure 5.9 clarifies the inclusion relations among 

the set of finite Sturmian words, PER, Se, and S0. Due to the fact that a factor of 

a word in St also belongs to St, St D F(Se U S0) holds, but this inclusion relation 

is in fact proper. For instance, a word aaabaaaabaaa is of length 12 and has two 

periods 9 and 5 while gcd(9, 5) is not its period. Hence, this word is in PER C St, 

while it is not in F(Se U S0) because no word in Se U S0 has a continuous run of 

the same four letters as its infix. Moreover, the infix baaaab of this example word 

shows PER U (Se U S0) C St. For the reason mentioned above, it is clear that 

baaaab e F(PER) but baaaab £ Se U SQ. In addition, baaaab has only one period 

which is strictly smaller than its length, and hence, baaaab & PER. 
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5.5 Concluding remarks 

In this paper, we improved the bound for the extension of the Fine and Wilf's 

theorem of [9] from b(p, q) to b'(p,q) = b(p,q) — [gcd(p,q)/2\. The complete char­

acterization of boundary common prefixes given here allows us to distinguish the 

case when this improved bound is optimal in terms of the lengths of given words. 

In particular, this improved bound is optimal for any (p, q) with p > q — 2 gcd(p, q). 

We also discussed the relationship between finite Sturmian words and the boundary 

common prefixes. 

One open case is finding optimal bound for a pair (p, q) with d = gcd(p, q) and 

p > q > 3d, for which the improved bound b'(p,q) = 2p+q — d— [d/2\ is not optimal 

due to Corollary 5.23. Note that for such (p, q), the bound b'(p, q) — l remains good, 

while in Section 5.3.2, 2p+ \d/2\ — 1 was proved not to be good. Thus, the optimal 

bound for such (p, q) exists between 2p+ \d/2] and b'(p,q) — 1. 
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Chapter 6 

Improvement on the results of the 
extended Lyndon-Schiitzenberger 
equation 

In this chapter, we introduce latest updates on the extended Lyndon-Schiitzenberger 

equation, which we discussed in Chapter 4. These results are under review of Inter­

national Journal of Foundations of Computer Science (as of August 13, 2010). 

Summary: A pseudo-primitive word with respect to an antimorphic involution 

9 is a word which cannot be written as a catenation of occurrences of a strictly 

shorter word t and 9(t). Properties of pseudo-primitive words are investigated 

in this paper. These properties link pseudo-primitive words with essential no­

tions in combinatorics on words such as primitive words, (pseudo)-palindromes, and 

(pseudo)-commutativity. Their applications include an improved solution to the 

extended Lyndon-Schiitzenberger equation U\U2 •• -ui = v\ • • • vnw\ • • • wm, where 

Ui, . . . , ue € {u, 9(u)}, vi,...,vn G {v, 9(v)}, and w\,..., wm G {w, 9(w)} for some 
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words u, v, w, integers £,n,m> 2, and an antimorphic involution 9. We prove that 

for £ > 4, n, m > 3, this equation implies that u,v,w can be expressed in terms of a 

common word t and its image 9(t). Moreover, several cases of this equation where 

£ = 3 are examined. 
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Properties of pseudo-primitive words and their 
applications 

Lila Kari1, Benoit Masson2, and Shinnosuke Seki1 

1 Department of Computer Science, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. 
2 IRISA (INRIA), Campus de Beaulieu, 35042 Rennes Cedex, France. 

6.1 Introduction 

For elements u, v,win& free group, the equation of the form ue = vnwm (£, n, m > 2) 

is known as the Lyndon-Schutzenberger equation (LS equation for short). Lyndon 

and Schutzenberger [13] investigated the question of finding all possible solutions 

for this equation in a free group, and proved that if the equation holds, then u, v, 

and w are all powers of a common element. This equation can be also considered on 

the semigroup of all finite words over a fixed alphabet E, and an analogous result 

holds. 

Theorem 6.1 (see, e.g., [7,13,14]). For words u,v,w € S + and integers £,n,m > 2, 

the equation ue = vnwm implies that u, v, w are powers of a common word. 

The Lyndon-Schiitzenberger equation has been generalized in several ways; e.g., 

the equation of the form xh = z^z^2 • • • z^n was investigated by Harju and Nowotka [8] 

and its special cases in [1, 11]. Czeizler et al. [3] have recently proposed another ex­

tension, which was originally motivated by the information encoded as DNA strands 

for DNA computing. In this framework, a DNA strand is modeled by a word w and 
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encodes the same information as its Watson-Crick complement. In formal language 

theory, the Watson-Crick complementarity of DNA strands is modeled by an anti-

morphic involution 9 [9, 15], i.e., a function 9 on an alphabet S* that is (a) antimor-

phic, 9(xy) = 9(y)9(x), Va;,y E £*, and (b) involution, 92 = id, the identity. Thus, 

we can model the property whereby a DNA single strand binds to and is completely 

equivalent to its Watson-Crick complement, by considering a word u and its image 

9(u) equivalent, for a given antimorphic involution 9. 

For words u, v, w, integers £,n,m > 2, and an antimorphic involution 9, an 

extended Lyndon-Schiitzenberger equation (ExLS equation) is of the form 

u1u2---ue = vi---vnwi---wm, (6.1) 

with ui,...,ut&. {u,9(u)}, vi,... ,vn E {v, 9(v)}, and wi,... ,wm E {w, 9(w)}. The 

question arises as to whether an equation of this form implies the existence of a word 

t such that u,v,w E {t, 9(t)}+. A given triple (£, n, m) of integers is said to impose 

pseudo-periodicity, with respect to 9, on u, v, w, or simply, to impose 9-periodicity 

on u, v, w if (6.1) implies u,v,w E {t, 9(t)}+ for some word t. Furthermore, we say 

that the triple (£, n, m) imposes 9-periodicity if it imposes ^-periodicity on all u, v, w. 

The known results on ExLS equations [3] are summarized in Table 6.1. 

This paper is a step towards solving the unsettled cases of Table 6.1, by using 

the following strategy. Concise proofs exist in the literature for Theorem 6.1, that 
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I 
> 5 

3 or 4 
2 

> 3 

n 

> 3 
> 3 
> 2 

2 

m 
> 3 
> 3 
> 2 
> 2 

^-periodicity 
YES 

? 
? 

NO 

Table 6.1: Summary of the known results regarding the extended Lyndon-
Schiitzenberger equation. 

make use of fundamental properties such as: 

(i) The periodicity theorem of Fine and Wilf (FW theorem), 

(ii) The fact that a primitive word cannot be a proper infix of its square, and 

(iii) The fact that the class of primitive words is closed under cyclic permutation. 

(For details of each, see [2].) In contrast, the proof given in [3] for the result 

about ExLS equations, stating that (> 5, > 3, > 3) imposes ^-periodicity, involves 

techniques designed for this specific purpose only. Should Properties (i), (ii), (iii) 

be generalized so as to take into account the informational equivalence between a 

word u and 9(u), they could possibly form a basis for a concise proof of the solutions 

to the ExLS equation. The approach we use in this paper is thus to seek analog 

properties for this extended case, and use the results we obtain to approach the 

unsettled cases in Table 6.1. 

Czeizler, Kari, and Seki generalized Property (i) in [4]. There, first the notion 

of primitive words was extended to that of pseudo-primitive words with respect to 
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a given antimorphic involution 9 (or simply, 0-primitive words). A word u is said to 

be 9-primitive if there does not exist another word t such that u G t{t,9(t)}+. For 

example, if 9 is the mirror image over {a, b}* (the identity function on {a, b} extended 

to an antimorphisrn on {a, b}*), aabb is ^-primitive, while abba is not because it 

can be written as ab9(ab). Based on the 0-primitivity of words, Property (i) was 

generalized as follows: "For words u, v, if a word in u{u,9(u)}* and a word in 

v{v,9(v)}* share a long enough prefix (for details, see Theorems 6.5 and 6.6), then 

u, v € t{t, 9{t)}* for some ^-primitive word £." 

In contrast, little is known about Properties (ii) and (iii) except that they cannot 

be generalized as suggested in the previous example: non-trivial overlaps between 

two words in {t,9(t)}+ are possible, and cyclic permutations do not in general 

preserve the 0-primitivity of words. As a preliminary step towards an extension of 

Property (ii), Czeizler et al. examined the non-trivial overlap of the form v\ • • • vmx = 

Fm+r - -^2mi where m > 1, vt is either v or 9(v) for some ^-primitive word v 

(1 < i < 2m), and both x and y are properly shorter than v [3]. Some of the results 

obtained there will be employed in this paper. 

One purpose of this paper is to explore further the extendability of Properties (ii) 

and (iii). The main result here is Theorem 6.12, which states that for a ^-primitive 

word x, neither x9(x) nor 9(x)x can be a proper infix of a word X\X2X%, where 

X]_,x2,x3 G {x,9(x)}. Based on this result, we consider two problems: For a 9-

primitive word x, (1) does v, yvz € {x, 9(x)}+ imply that y and z are in {x, 9(x)}*l; 
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and (2) if the catenation of words u, v is in {x, 9(x)}+, under what conditions does 

u, v € {x,9(x)}* hold? In particular, our investigation into the second problem 

will reveal close relationships between primitive words, ^-primitive words, and 9-

palindromes (fixed points of 9). These relationships further present several cyclic 

permutations under which the #-primitivity of words is preserved. 

The results thus obtained enable us to prove that the triple (4, > 3, > 3) imposes 

^-periodicity (Theorem 6.48) in a much simpler manner than the proof in [3] for 

(> 5, > 3, > 3). Even for (3,n, m) ExLS equations, these results give some insight 

and narrow down the open cases of ExLS equations. 

The paper is organized as follows: in the next section, we provide required 

notions and notation. Section 6.3 begins with the proof of some basic properties 

of ^-primitive words, and then proves some consequences of overlaps between 9-

primitive words of a similar flavour with Properties (ii) and (iii) (e.g., Theorem 6.12, 

Corollary 6.23). These tools are used in Section 6.4, where we prove that the (4, > 

3, > 3) ExLS equation has only ^-periodic solutions (Theorem 6.48), and study 

particular cases of (3, n, m) ExLS equations. 

6.2 Preliminaries 

An alphabet is a finite and non-empty set of symbols. In the sequel, we shall use 

a fixed non-singleton alphabet E. The set of all words over E is denoted by E*, 
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which includes the empty word A, and let E+ = E* \ {A}. The length of a word 

it; G E* is denoted by |iw|. A word v is an infix (resp. prefix, suffix) of a word w if 

w = xvy (resp. w = vy, w — xv) for some x,y E E*; in any case, liw^v, then the 

infix (prefix, suffix) is said to be proper. For a word w, denote by Pref (w) the set of 

prefixes of w and by Suff (w) the set of its suffixes. 

A language L is a subset of E*. For a non-negative integer n > 0, we write Ln 

for the language consisting of all words of the form wi • • • wn such that each w% is 

in L. We also write L-n for Ln U Ln+l U Ln+2 U • • •. Analogously, we can define 

L<" = L° U V- U • • • U Ln. For L^° and Z^1, we employ the traditional notation L* 

and L+. 

A mapping 9 : E* —> E* is called an antimorphic involution of E* if 9(xy) = 

9(y)9(x) for any x,y G E* (antimorphism), and 92 is equal to the identity (invo­

lution). Throughout this paper, 9 denotes an antimorphic involution. The mirror 

image, which maps a word to its reverse, is a typical example of antimorphic in­

volution. A word w G E* is called a 9-pahndrome if w = 9(w). A word which is 

a 0-palindrome with respect to a given but unspecified antimorphic involution 9 is 

also called a pseudo-palindrome [5]. 

A non-empty word w G E+ is said to be primitive if w — vn implies n = 1 for 

any word v G E+ . It is known that any non-empty word w G E+ can be written as a 

power of a unique primitive word, which is called the primitive root oiw, and denoted 

by p(w). Two words which commute share a primitive root, that is, uv = vu implies 
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p(u) = p(v) (see [2]). In literature, it is said that uv = vu causes a defect effect 

(for details of defect effects and defect theorems, see [2, 14]). The LS equation also 

causes defect effect, since ue = vnwm with £, n, m > 2 implies p(u) — p(v) = p(w) 

(Theorem 6.1). The following results describe other relations causing a defect effect. 

Lemma 6.2 ([4]). Let u € S + such that u — pq for some 9-palindromes p,q G X+ . 

If q G Pref(u) and \q\ > \p\, then p(p) = p(q) = p(u). 

Theorem 6.3 ([2]). Let u, v G E + . If there exist a(u,v) G u{u, v}* and /3(u, v) G 

v{u, v}* which share a prefix of length at least \u\ + \v\, then p(u) = p(v). 

The notion of primitive word was generalized into that of pseudo-primitive word 

by Czeizler, Kari, and Seki [4]. For an antimorphic involution 9, a non-empty word 

w G S + is said to be pseudo-primitive with respect to 9, or simply 9-primitive, if 

w G {v,9(v)}n implies n = 1 for any word v G S + . In [4] it was proved that for 

any non-empty word w G S + , there exists a unique ^-primitive word t satisfying 

w G t{t, 9(t)}*. Such a word t is called the 9-primitive root of w. The next lemma 

describes a property of the ^-primitive root of a ^-palindrome of even length. 

Lemma 6.4. Let x G S + be a 9-primitive word and p be a 9-palindrome of even 

length. If p = x\x2 • • • xm for some m > 1 and xi,..., xm G {x, 9{x)}, then m has 

to be even. 

Proof. Suppose that the equality held for some odd m. Then x must be of even 

length because \p\ is even. Hence £(m-i)/2 becomes a ^-palindrome. Thus x = y9{y) 
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for some y G S + . However, this contradicts the 0-primitivity of a;. • 

The theorem of Fine and Wilf (FW theorem) is one of the fundamental results 

on periodicity [6]. It states that for two words u,v G E+ , if a power of u and a 

power of v share a prefix of length at least \u\ 4- \v\ — gcd(|u|, \v\), then p{u) = p(v), 

where gcd(-, •) denotes the greatest common divisor of two arguments (for its proof, 

see, e.g., [2]). This theorem has been generalized in [4], by taking into account the 

equivalence between a word and its image under 9, in the following two forms. 

Theorem 6.5 ([4]). Let u, v G S + . If a word in {u, 0(u)}* and a word in {v, 0(v)}* 

share a prefix of length at least lcm(|it|, |u|), then u,v G {t,8(t)}+ for some 9-

primitive word t G S + , where lcm(-, •) denotes the least common multiple of two 

arguments. 

Theorem 6.6 ([4]). Let u,v G S + with \u\ > \v\. If a word in {u, 0(u)}* and 

a word in {v,9(v)}* share a prefix of length at least 2\u\ + \v\ — gcd(|u|, \v\), then 

u, v G {t, 9(t)}+ for some 9-primitive word t G S + . 

In a way, we can say that these theorems describe relations causing a weak defect 

effect because they all imply that u,v £ {t, 9(t)}+ for some ^-primitive word t G S+ , 

which is strictly weaker than the usual defect effect p(u) — p(v) [4]. Various relations 

causing such a weak defect effect were presented in [4]. 

Besides, the commutativity xy — yx was extended to the 0-commutativity xy = 

9(y)x in [10]. This is a special case of xy = zx, whose solutions are given as 
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x = r(tr)1, y = (tr)3, and z = (rt)3 for some i > 0, j > 1, and r, t G S* such that ri 

is primitive (see, e.g., [2]). The next proposition immediately follows from this; note 

that the 0-commutativity equation guarantees that both r, t are ^-palindromes. 

Proposition 6.7 ([10]). For x,y G S +
; the solutions of xy = 9(y)x are given by 

x — r(tr)% and y — (tr)3 for some i > 0, j > 1, and 9-palindromes r, t such that rt 

is primitive. 

Although this equation does not cause even a weak defect effect, one encounters 

it often when considering word equations which involve 9. Note that for words 

u, v G S*, it was proved in [4] that the system uv = 9(uv) and vu = 9(vu) causes a 

weak defect effect: « ,»€ {£, 9(t)}* for some t G S + . Thus for words x, y, z satisfying 

xy — zx, if both y and z are 0-palindromes, then the representation of solutions of 

xy = zx implies tr = 9(tr) and rt — 9(rt). Hence the next result holds. 

Proposition 6.8 ([3]). For a word i £ E + and two 9-palindromes y,z G S + , the 

equation xy = zx implies that x,y,z G {t, 9(t)}* for some t G S + . 

6.3 Propert ies of Pseudo-Primitive Words 

The primitivity of words is one of the most essential notions in combinatorics on 

words. The past few decades saw a considerable number of studies on this topic (see 

e.g., [2, 12, 16]). In contrast, research on the pseudo-primitivity of words has just 

been initiated in [3, 4]. For instance, although the class of pseudo-primitive words 
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was proved to be properly included in that of primitive words [4], nothing else is 

known about the relation between these two classes. The purpose of this section is 

to prove various properties of pseudo-primitive words. 

Throughout this section, 9 is assumed to be a given antimorphic involution. We 

begin this section with a simple extension of a known result on the primitive root 

(Lemma 6.9) to the ^-primitive root (Lemma 6.10). 

Lemma 6.9 (e.g., [16]). For words u, v £ S + and a primitive word w £ S +
; the 

following properties hold: 

1. un £ w+ implies u £ w+; 

2. uv, u £ w+ or uv, v £ w+ implies u,v £ w+. 

Lemma 6.10. For words u, v £ S + and a 9-primitive word x £ S + , the following 

properties hold: 

1. for some n > 1, un £ {x, 9(x)}+ implies u £ {x, 9(x)}+; 

2. uv, u £ {x, 9(x)}+, or uv, v £ {x, 9(x)}+ implies u, v £ {x, 9(x)}+; 

3. 9(u)v, u £ {x, 9{x)}+, or u9(v), v £ {x, 9(x)}+ implies u,v £ {x, 9(x)}+. 

Proof. The first property follows from Theorem 6.5, while the others are immediately 

proved by comparing the length of words. • 

As mentioned in the introduction, if a word w is primitive, then the equation 

w2 = ywz implies either y = A or z = X. Since a ^-primitive word is primitive, this 



www.manaraa.com

203 

applies to ^-primitive words, too; a ^-primitive word x cannot be a proper infix of 

x2. However, due to the informational equivalence between x and 9(x), we should 

consider equations like x2 = y9{x)z as well, and in fact this equation can hold with 

non-empty y and z. Nevertheless, we can state an analogous theorem based on the 

next lemma. 

Lemma 6.11 ([4]). Letx G S + be a9-primitive word, andxi, x2, x%, x± G {x,9(x)}. 

If xix2y — ZX3X4 for some non-empty words y, z G S + with \y\,\z\ < \x\, then 

x2 ^ x3. 

Theorem 6.12. For a 9-primitive word x G £ + , neither x9(x) nor 9(x)x can be a 

proper infix of a word in {x, 9(x)}3. 

Proof. Let xi,x2,x% G {x,9(x)} and suppose that x9(x) is a proper infix oi x 1X2X3. 

That is to say, there exist words y,z,y',z' G S + , 0 < |y|, \z\, \y'\, \z'\ < \x\ such 

that zx9(x) = x\x2y and x9(x)y' = z'x2xz- By Lemma 6.11, the first equation 

implies that x2 ^ x and the second that x2 ^ 9(x), this is in contradiction with 

x2 G {x, 9(x)}. We prove similarly that 9{x)x cannot be a proper infix of xix2x3. D 

This theorem will lead us to two propositions (Propositions 6.16 and 6.20), as 

well as to several other results. The main usage of these propositions in this paper is 

the following "splitting strategy," which shall prove useful in solving ExLS equations 

in Section 6.4. Given "complicated" words in {x,9(x)}+ for a ^-primitive word x, 

these propositions make it possible to split such words into "simple" component 
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words which are still in {x, 9(x)}+. Then, Lemmas 6.9 and 6.10 are often applicable 

to subdivide these simple components into smaller units in {x, 0(x)}+. 

Recall that a primitive word cannot be a proper infix of its square. It is hence 

evident that for a primitive word w, if a word u in w+ contains w as its infix 

like u = ywz for some y,z G £*, then y,z G w*. For such w, more generally, 

v, yvz G w+ implies y, z G w*. This raises a naturally extended question of whether 

for a ^-primitive word x, if v, yvz G {x, 9(x)}+, then y, z G {x, 9(x)}* holds or not. 

Although this is not always the case, we provide some positive cases based on the 

following lemma, which is a natural consequence of Theorem 6.12. 

Lemma 6.13. Let x be a 9-primihve word, and v G S + . For y,z G S*, either 

yx9(x)z G {x,9(x)}* or y9(x)xz G {x,0(x)}* implies y,z G {x,9(x)}*. 

Proof. We prove that yx9(x)z G {x, 9(x)}* implies y,z G {re, 9(x)}*. Let yx9(x)z — 

X\ • • • xn for some n > 2 and xi,..., xn G {x, 9(x)}. In light of Theorem 6.12, there 

must exist such i that y = x\ • • -Xi_i, x^(x) — xtxl+i, and 2 = xl+2 • • -xn. D 

Lemma 6.14. Let x be a 9-primitwe word, and v G S + . If v, yvz G {x,^(x)}* for 

some y, z G S* anrf either x9(x) or 9{x)x is an infix of v, then y,z G {x, ^(x)}*. 

Proof. Here we consider only the case when x#(a;) is an infix off. Due to Lemma 6.13, 

we can let v = x'x9(x)x" for some x',x" G {x, 0(x)}*. Thus, ywz = yx'x9(x)x"z G 

{x,0(x)}-2. From this, the same lemma derives yx',x"z G {x,0(x)}*. Based on 

Lemma 6.10, we obtain y, z G {x, #(x)}*. • 
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Lemma 6.14 is a generalization of Lemma 6.13, and makes it possible to prove 

the following two propositions. 

Proposition 6.15. Let x be a 9-primitive word, and v G S + . Ifv, yvz G {x, 9(x)}-2 

for some y, z G S* and v is primitive, then y,z G {x, 9{x)}*. 

Proof. Let v = x\ • • -xm for some m > 2 and xi,...,xm G {x,9(x)}. Since v is 

primitive, there exists 1 < i < m such that XjXj+i G {£#(x), 0(x)x}. Now we can 

employ Lemma 6.14 to get this result. • 

Proposition 6.16. Let x be a 9-primitive word, and v G S + . Ifv, yvz G {x, 9(x)}+ 

for some y,z G S* and v is a non-empty 9-palindrome, then y, z G {x, 0(x)}*. 

Proof. Let v = xi • • • xn for some n > 1 and x i , . . . , xn G {x, ^(x)}. If n is odd, 

then u = 9{v) implies X(n+1)/2 = 9(x(n+i)/2) a n d this means a; = 9(x). Thus we have 

v,yvz G a;+, and hence y,z e x*. If n is even, then xn/2Xn/2+i G {a;0(:r), 9(x)x} so 

that y, z G {x, 0(:r)}* due to Lemma 6.14. • 

From now on, we address the following question: "for a ^-primitive word x and 

two words u, v G S* such that uv G {x,9(x)}+, under what conditions on u,v, we 

can say u, v G {x, 0(x)}*?". Here we provide several such conditions. Among them 

is Proposition 6.20, which serves for the splitting strategy. As its corollary, we will 

obtain relationships between primitive words and ^-primitive words (Corollaries 6.21 

and 6.22). 
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Proposition 6.17. Let x be a 9-primitive word, u £ Suff({a;, 0(x)}+), and v £ 

Pref({x, 9(x)}+). If uv = xi---xm for some integer m > 2 and xi,... ,xm £ 

{x, 9(x)}, then either u,v £ {x, 9(x)}+ or x\ = • • • — xm. 

Proof. Let us prove that when u,v £" {x, 9(x)}+, x\ — ••••= xm must hold. Let 

u = z'sx\_x • • •x[ for some i > 1, x[,..., x\ € {x, 9(x)}, and some non-empty words 

z'p,z's e S + such that z'pz's = x[. We can also let v = x'[ • • •x'^^Zp for some j > 

1, x",...,x" G {x,9(x)}, and z'p\ z" G E+ such that zpz" = x}. Now we have 

x'l---x\x'[---x" — z'puvz" — z'pxi •• -xmz". Since 0 < \z'p\ < \x\, Theorem 6.12 

implies X\ = • • • = xm. D 

Corollary 6.18. Let x be a 9-primitive word, and u £ SuS({x,9(x)}+), v € 

Pref({x,0(x)}+). If uv is in {x,9(x)}-2 and primitive, then u, v e {x,9(x)}+. 

Proposition 6.17 gives the following two propositions which play an important 

role in investigating the ExLS equation. 

Proposition 6.19. Let x be a 9-primitive word, and u, v € S + . If uv,vu £ 

{x, 9(x)}n for some n > 2, then one of the following statements holds: 

1. u,v £ {x,9{x)Y; 

2. uv = xn and vu = 9(x)n; 

3. uv = 9(x)n and vu = xn. 
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Proof. We have v G Pref({x, 9(x)}+) and u G Suff({x,9(x)}+) because vu G 

{x,6{x)}n. Proposition 6.17 implies that either the first property holds or uv G 

{xn,9(x)n}. Here we consider only the case when uv = xn. Then u = xlxp and 

v = xsx
n~l~l for some 1 < i < n and xp,xs G S + with x = £p:rs. Thus, we have 

Xpvuxs = xn+1, from which can deduce vu = 9(x)n with the aid of Theorem 6.12 

and the fact that x cannot be a proper infix of its square. • 

Proposition 6.20. Letx G S + be a 9-pnmitive word, andp, q G S + be 9-pahndromes. 

Ifpq is primitive, andpq = x\ • • -xn for some n > 2 andxi,... ,xn G {x, 9(x)}, then 

there are integers k, m > 1 such that n = 2m, p = xi • • • X2k, o,nd q = X2fc+i • • • 2̂m-

Proof. It is clear from pq = x\ • • -xn thatp G Pref({x, 9(x)}+) and q G SuS({x,9(x)}+). 

Since both p and q are ^-palindromes, these mean that p G Suff({x,9(x)}+) and 

q G Pref({x, 9(x)}+). Hence we can apply Proposition 6.17 to obtain p — xi • • -xt 

and q = xl+\ • • -xn for some i (since pq is primitive, the case x\ = • • • = xn is 

impossible). 

The integer i has to be even (i = Ik for some k > 1). Suppose not, then p being 

a ^-palindrome implies that X(J+i)/2 is a ^-palindrome, and hence so is x. As a result, 

pq — xn but this contradicts the assumption that pq is primitive. Similarly, n — i 

proves to be even, too, and we obtain n = 2m. • 

The next two corollaries follow from Proposition 6.20. The first one provides us 

with a sufficient condition for a primitive word that is a catenation of two non-empty 
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^-palindromes to be ^-primitive. 

Coro l la ry 6.21. For non-empty 9-palindromes p, q, ifpq is primitive but there does 

not exist any x such that p,q € {x,9(x)}+, then pq is 9-primitive. 

Corol la ry 6.22. Let p,q be non-empty 9-palindromes such that pq is primitive. 

Then some word in {p, q}+ is 9-primitive if and only if pq is 9-primitive. 

Proof. The converse implication is trivial because pq G {p, q}+. The direct implica­

tion can be proved by considering its contrapositive, which is immediately given by 

Proposition 6.20. • 

Note that in the statement of Corollary 6.22 we cannot replace the quantifier 

"some" with "all". A trivial example is (pq)2 E {p, g } + , which is not even primitive. 

We can also provide a non-trivial example as follows: 

Example 16. Let 9 be the mirror image over {a, b}*, p = a, and q — baaab. It is 

clear that pq = abaaab is ^-primitive. On the other hand, qppp = (baaa)2 € {p, q}+ 

is not even primitive. 

Corollary 6.22 gives a further corollary about the case in which a word obtained 

from a 0-primitive word by cyclic permutation remains ^-primitive. 

Coro l la ry 6.23. For two non-empty 9-palindromes p,q, if pq is 9-primitive, then 

qp is 9-primitive. 
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Proof. Since pq is ^-primitive, it is primitive and hence its conjugate qp is also 

primitive. Applying Corollary 6.22 to qp gives the result. • 

Corollary 6.23 gives a partial answer to one of our questions on the preservation 

of 0-primitivity under cyclic permutation. 

Now let us examine the equation pq — x\ • • • xn from a different perspective to 

get some results useful in Section 6.4. Here we see that the assumptions considered 

in Proposition 6.20: pq being primitive and both of p, q being a ^-palindrome are 

critical to obtain p,q £ {x, 9(x)}+. 

Lemma 6.24. For a 9-primitive word x € S + and k > 2, let xi,X2,---,Xk € 

{x, 9(x)}. If pz = £1X2 • • • %k for some 6-palindrome p and non-empty word z e E + 

with \z\ < \x\, then x\ = ;r2 = • • • = Xk-i- Moreover, if z is also a 9-palindrome, 

then Xk — Xk-i-

Proof. Due to the length condition on z, we can let Xk = yz for some non-empty 

word y € S + . Hence we have p = X\X^ • • -Xk-iy- Since p is a ^-palindrome, p = 

9(y)9(xk-i) • • • 9(xi). This means that 9{xk-\) • • • 9(xi) is a proper infix of x\ • • • Xk, 

and we can say that Xi = • • • = Xk-\ using Theorem 6.12 (we can assume k > 3, 

since if k = 2 the consequence is trivial). 

Now we consider the additional result when z — 9{z). Without loss of generality, 

we can assume that x\ = x. So we have p = xk~ly — 9(y)9(x)k~l. Since \y\ < 

|0(x)|, this equation gives 9(x) = qy for some non-empty word q. Actually q is 
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a ^-palindrome. Indeed, we have qy G Suff(p) = SuS(xk~1y), hence as \q\ < \x\, 

q G Suff(x). Moreover, by definition, q G Pref(0(:r)), therefore 9{q) G Suff(x) and 

thus q has to be a ^-palindrome. 

Thus, if Xk — 9(x), then 6{x) — qy = yz and hence 9(x) could not be ^-primitive 

due to Proposition 6.8, raising a contradiction. • 

For two ^-palindromes p, q, a ^-primitive word x, and xi,...,Xk G {x, 9(x)} 

(k > 1), if \q\ < \x\, then the equation pq = X\---Xk turns into pq = xk due 

to Lemma 6.24 and its solution is x = p'q for some 0-palindrome p' such that 

p = xk~1p''. If we replace q in this equation with a word z, which is not assumed 

to be a 0-palindrome, and if k > 3, then we can still find an intriguing non-trivial 

solution to the equation pz = xk~19(x). 

Example 17. Let p be a 0-palindrome, x be a ^-primitive word, and z G S + with 

\z\ < \x\. For some i > 0, j > 1, k > 3, and 0-palindromes r,t such that rt is 

primitive, we can see that x = [r(trY]2(tr)J, p = xk~1r(tr)1, and z = (tr)Jr(trY 

satisfy pz = xk~19(x). 

Note that r and t in this example are given by Proposition 6.7. Further research 

on the properties of words in {r(tr)\ (tr)3}* may shed light on the properties of 

^-primitive words. In Section 6.4.2, we will provide some results along this line, 

such as the ones in Propositions 6.34 and 6.35. 
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6.4 Extended Lyndon-Schutzenberger equation 

As an application of the results obtained in Section 6.3, we address some open cases 

of the extended Lyndon-Schutzenberger equation in this section. 

For u,v,w € £ + , the ExLS equation under consideration is of the form 

Ui---Ut = Vi • • • VnWi • • • Wm, 

where ui,... ,ug€ {u,9(u)}, vi,..., vn e {v,9(v)}, and tui,. . . ,wm € {w, 9(w)}, for 

£,n,m > 2. The open cases are £ € {2, 3, 4} and m, n > 3 (see Table 6.1). It suffices 

to consider the case when both v and w are ^-primitive; otherwise we simply replace 

them with their ^-primitive roots and increase the parameters n and m. The words 

v\- • -Vn and w\ • • • wm being symmetric with respect to their roles in the equation, 

it is also legitimate to assume that \v\ • • • vn\ > \wi • • • wm\. 

Throughout Subsections 6.4.1 to 6.4.4, we prove that the triple (4, > 3, > 3) im­

poses ^-periodicity. First of all, in Subsection 6.4.1, the problem which we actually 

work on is formalized as Problem 6.1, and we solve some special instances of ExLS 

equation to which the application of the generalized Fine and Wilf's theorem (Theo­

rem 6.5) immediately proves the existence of a word t satisfying u, v, w G {t, 9(t)}+. 

We call such instances trivial ExLS equations. In Subsection 6.4.2, we provide ad­

ditional conditions which can be assumed for non-trivial ExLS equations. Several 

lemmas and propositions are also proved there. They are interesting in their own 
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and our proof techniques for them probably include various applications beyond the 

investigation on the non-trivial ExLS equations in Subsection 6.4.3 (the case when 

«2 = ^1) and Subsection 6.4.4 (the case when u2 / ui). In each of these subsections, 

we analyze four cases depending on the values of 113 and 1/4 one at a time. All of 

these proofs merely consist of direct applications of the results obtained so far and 

in Subsection 6.4.2. 

In Subsection 6.4.5, we prove that for n, m > 2, the triple (3, n, m) does not 

impose ^-periodicity. We provide several (parametrized) examples which verify that 

for some specific values of n, m, the triple (3, n, m) does not impose ^-periodicity. 

Our survey will expose complex behaviors of (3, n, m) ExLS equations. 

6.4.1 Problem setting for the ExLS equation £ — 4 

Taking the assumptions mentioned above into consideration, the problem which we 

are addressing is described as follows: 

Problem 6.1. Let u,v,w € E + and integers n, m > 3. Let u\, U2, U3, U4 € {u, 9(u)}, 

vi,..., vn e {v, 9(v)}, and wi,..., wm e {w, 9(w)}. Does the equation U1U2U3U4 — 

V\ • • • vnWi • • • wm imply u,v,w € {t, 9(t)}+ for some t € S + under all of the following 

conditions? 

1. v and w are ^-primitive, 

2- \vi---Vn\ > \Wi---Wml, 

file:///Wi---Wml
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3. «i = u, v\ — v, and wm = w, 

4. \v\, \w\ < \u\. 

The condition 2 means that 2\u\ < n\v\. Besides, the condition 4 follows from the 

conditions 1 and 2 as shown in the next lemma. 

Lemma 6.25. Let u,v,w € S + such that v, w are 9-primitive. If ^1^2^31*4 = 

v\ • • • vnWi • • • wm for some n, m > 3, «i, u2, u3, w4 G {u, 0(u)}, vi,. • • ,vn G {v, 0(v)}, 

and wi,..., wm G {w, 0(w)}, then \v\ < \u\ and \w\ < \u\. 

Proof. Due to Condition 2, |i>i • • -vn\ > \wi • • -wm\. This means that m\w\ < 2\u\, 

which in turn implies |u;| < | | M | because m > 3. Thus |tu| < \u\. 

Now suppose that the ExLS equation held with |t>| > \u\. Then v\ • • • vn is a 

prefix of U1U2U3U4 of length at least 3\v\ > 2\v\ + \u\, and hence u,v G {t,9(t)}+ 

for some ^-primitive word t G S + due to Theorem 6.6. Unless \v\ = \u\, we reach 

the contradiction that v would not be ^-primitive. Even if \v\ — \u\, we have 

U4, — wi • • • wm. Therefore v\ = u\ could not be ^-primitive. D 

The next lemma reduces the number of steps required to prove a positive answer 

to Problem 6.1. 

Lemma 6.26. Under the setting of Problem 6.1, ifu, v G {t, 0(t)}+ for some t G E + , 

thenw G {t,9(t)y. 
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In fact, we can say more strongly that if two of u, v, w are proved to be in 

{t, 9{t)}+ for some t, then the other one is also in this set. 

First of all, we distinguish the case in which the existence of such t that u,v,w G 

{£, 9(t)}+ is trivial due to the generalized Fine and Wilf theorem (Theorem 6.5). 

Theorem 6.27. Under the setting of Problem 6.1, if there exists an index i, 1 < 

i < n, such that U\Ui = v\---v%, then u,v,w e {t, 9(t)}+ for some word t £ S + , 

Proof. Since v is assumed to be ^-primitive, Theorem 6.5 implies u € {v,9(v)}+. 

Then w € {v,9(v)}+ due to Lemma 6.26 (in fact, w e {v,9(v)} because w is also 

assumed to be 9-primitive). • 

If a given (4, n, m) ExLS equation satisfies the condition in Theorem 6.27, then 

we say that this equation is trivial. Before initiating our study on non-trivial ExLS 

equations, we provide one important condition which makes the equation trivial 

according to the generalized Fine and Wilf theorem (Theorem 6.6). 

Proposition 6.28. Under the setting of Problem 6.1, if n\v\ > 2\u\ + \v\, then the 

equation is trivial. 

Proof. We can employ Theorem 6.6 to obtain u,v E {£, 9(t)}+ for some t € S+ . In 

fact, t is either v or 9{v) because v is assumed to be ^-primitive. Hence we can find 

such i stated in Theorem 6.27, and by definition this equation is trivial. • 
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6.4.2 Non-trivial (4, > 3, > 3) ExLS equations and related 

combinatorial results 

Now we shift our attention to the non-trivial (4, > 3, > 3) ExLS equation. What 

we will actually prove here is that under the setting of Problem 6.1, any non-trivial 

equation cannot hold. Along with Theorem 6.27, this implies that (4, > 3, > 3) 

imposes ^-periodicity. 

From this theorem and Proposition 6.28, the equation is non-trivial if and only 

if (n — l)\v\ < 2\u\ < n\v\. Thus, the next proposition, which was proposed in [3] 

to decrease the amount of case analyses for the (5, > 3, > 3) ExLS equation, is still 

available for the investigation of non-trivial (4, > 3, > 3) ExLS equations. 

Proposit ion 6.29 ([3]). Let u, v G S + such that v is 9-primitive, U2, «3 G {u, 9(u)}, 

and t>2, • • •, vn € {v, 9(v)} for some integer n > 3. / / W2 • • • vn G Pref (UU2U3) and 

(n — l)\v\ < 2\u\ < n\v\, then there are only two possible cases. 

1. 1*2 = 6{u): and V2 = • • • = vn — v with u9(u) = (pg)™~V an^ v — pq for some 

non-empty 9-palindromes p, q. 

2. U2 — u: n is even, V2 = • • • = vn/2 = v, and vn/2+i = •' • — vn = 9{v) 

with v = r(trY(rty+Jr and u = vnl2~lr{tr)l(rt)3 for some i > 0, j > I, and 

non-empty 9-palindromes r,t such that rt is primitive. 

This proposition helps in proving that non-trivial (4, > 3, > 3) ExLS equations 
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verify the one more condition that \v\ ^ \w\ as shown in the next proposition. 

Proposition 6.30. Non-trivial ExLS equations under the setting of Problem 6.1 

imply \v\ 7̂  \w\. 

Proof. Suppose that the equation were non-trivial with |t>| = \w\. Combining \v\ = 

\w\ and the non-trivial length condition together implies m — n — 1 and furthermore 

the border between u^ and U3 splits vn into exactly halves. Hence if U3 = 0(u2), 

then vn — x9(x) for some x £ E+ , contradicting the 0-primitivity of v. Besides, 

due to the condition 4 of Problem 6.1, if u4 = 9(ui), then w = 9(v), and hence 

U1U2W3U4 e {v,9(v)}+. Taking [n—l)\v\ < 2\u\ < n\v\ into account, this implies that 

v is not ^-primitive, raising a contradiction. Therefore, the only possible solutions 

verify us = U2 and U4 = U\ = u. 

If U2 — U3 — u, then according to Proposition 6.29, n is even, and by substitut­

ing the representations of u and v given there into it4 = vnl29{y)nl2w\ • • -wm, we 

obtain that wl---wm = (tr)J[r(tr)V(ir)l+J]"/2"-1[r(ir)l+Jr(ir)8]n/2-1(ri)J, which is a 

0-palindrome of even length. Since w is ^-primitive, m has to be even (Lemma 6.4). 

It is however impossible because m = n — 1 and n is even. 

If u2 = U3 = 9(u), then Proposition 6.29 gives v = pq and «i«2 = u9(u) = 

(pq)n~lp for some ^-palindromes p, q e S + . Note that the left side of the ExLS 

equation is as long as its right side (4|u| = n\v\ +m\w\ = (2n — l)|pg|). Substituting 

2\u\ — {n — l)\pq\ + \p\ into this yields \p\ = \q\ and it in turn implies that both p 
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and q are of even length. Let p = p'9(p') and q = q'0(q') for some p', q' € S + of 

the same length. Then uy = u ends with either 9{p')qp' or 9(q')pq', and so wm is 

either of them. However, neither is ^-primitive. This contradiction proves that the 

equation is trivial. • 

Supposing that some non-trivial (4, > 3 ,> 3) ExLS equation held, the next claim 

would follow from this proposition. Although our conclusion in this section will prove 

that this claim cannot hold, the equation proposed there, U3U4 = qwi • • • wm, or more 

generally the relation qw\ • • • wm £ {u, 9(u)}-2 provides in its own right challenging 

themes. 

Claim 6.31. Under the setting of Problem 6.1, if the ExLS equation were non-

trivial, then we would have U%UA — qw\ • • • wm for some non-empty 9-palindrome 

Proof. According to the presentations of u and v given in Proposition 6.29, if u-i = 

9(u), then u9(u)q — vn and hence U3U4 = qw\---wm; otherwise, uu[r(tr)1]2 = 

vnl29(v)nl2 so that U3U4 = [r(tr)l]2wi • • • wm. Since q,r,t are ^-palindromes, this 

claim holds. • 

As we shall see soon in Claim 6.33, the next lemma is of use when considering 

non-trivial ExLS equations with u3 ^ U4, that is, U3U4 being a 0-palindrome. 

Lemma 6.32. Let p, q be non-empty 9-palindromes and let w be a 9-primitive word. 
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For some k > 1 and words Wi,...,wk G {w,9(w)}, if p — qw\---wk holds, then 

either p,q G {w, 9(w)}+ or Wi — • • • = wk. 

Proof. First we prove that q G Suff((wi • • -Wk)+). Since W\---Wk G Suff(p), p 

being a ^-palindrome implies 6{w\ •• -wk) G Pref(p). Thus if \q\ < A;|tw|, then 

q G Piei(9(wi- • -Wk)), that is, q G Suff (wi • • • wk) and we are done. Otherwise, 

w\---Wk G Suff(q) so that (wi • • • Wk)2 G Suff(p). By repeating this process, even­

tually we will find some integer i > 1 such that q € Suff ((wi • • • Wk)1)-

If q G {w,9(w)}+, thenp G {w,9(w)}+. Otherwise, let q = w'wJ+i • • -wk(wi • • -Wk) 

for some 1 < j < k and i > 0, where w' is a non-empty proper suffix of wr 

Then, p = w'wJ+i • • • Wk(wi • • • Wk)l+l overlaps in a non-trivial way with p — 9(p) = 

(9(wk) • • • 9(wi)Y+19(wk) • • • 9(wJ+i)9(w'), and Theorem 6.12 implies that w\ = • • • — 

wk. U 

Claim 6.33. Under the setting of Problem 6.1, if the ExLS equation were non-trivial 

and U3 ^ U4, then wi = • • • = wm = w and M3U4 G Suff(w;+). 

Proof. We have U3M4 = xw\ • • • wm for some non-empty 0-palindrome x G S + due 

to Proposition 6.29. As suggested before, we can employ Lemma 6.32 to get either 

x,u3U4 G {w,9(w)}+ or wi = • • • — wm. In the first case, Theorem 6.5 implies 

u G {w,9(w)}+ because w is assumed to be ^-primitive. Then the ExLS equation 

in turn implies that V\---vn G {w,9(w)}+ and hence v G {w,9(w)} for the same 

reason. As a result the equation would be trivial. Consequently wi = • • • = wm. • 



www.manaraa.com

219 

The main strategy used in the analyses of non-trivial ExLS equations is to split 

W\ • • -wm into smaller components which are still in {w,9(w)}+, until we reach a 

contradiction. The split is mainly achieved by Propositions 6.16 and 6.20. Note 

that the word to which Proposition 6.20 is applied must be primitive. The next 

two lemmas work for this purpose in Subsection 6.4.3, but we provide them in more 

general form. An interesting point is that Lyndon and Schiitzenberger's original 

result (Theorem 6.1) plays an essential role in their proofs; hence for the ExLS 

equation. 

Proposition 6.34. Let r, t £ S + such that rt is primitive. For any i > 0, j,k > 1, 

and n > 2, {tr)3[(r(tr)l)n(tr)3\k is primitive. 

Proof. Suppose that the given word were not primitive; namely, for some £ > 2 and 

a primitive word x, let (tr)3[(r(try)n(tr)3]k = xe. Catenating (r(tr)l)n to the left to 

the both sides of this equation gives [(r(trY)n(tr)3]k+1 = (r(trY)nxe. As k > 1 and 

n,£ > 2, we can apply Theorem 6.1 to this equation to obtain p((r(tr)%)n(tr)3) — 

p(r(tr)z) = x. Using Lemma 6.9, one can obtain p((tr)3) = x, and furthermore, 

p(tr) = x. Combining this with p(r(tr)1) = x gives us p(r) = p(t) and hence rt 

would not be primitive, which contradicts the hypotheses. D 

Proposition 6.35. Let r,t £ S + such that rt is primitive. For any i > 0, j , k,m > 

1, (tr)3[(r(tr)l)m{tr)3]k-l(r(try)m-l{rt)3 is primitive. 

Proof. Suppose that we had {tr)3[(r(tr)%)m(tr):i\k~l{r{tr)%)m~l(rt):) = xe for some 
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primitive word x and £ > 2. Catenating (r(tr)*)m+1 to the right to the both sides 

of this equation gives [(tr)3'{r{tr)%)m]k+l = xe(r(trY)m+1. Now as in the proof of 

Proposition 6.34, we reach the contradicting conclusion that rt is not primitive. • 

There are some results which can be used for the splitting strategy, once we 

apply Proposition 6.29 to non-trivial ExLS equations with u\ ^ u2, which will be 

considered in Subsection 6.4.4. As before, they are provided in more general form 

than required for the purpose. 

Lemma 6.36. Let z , w 6 E + with \z\ < \w\ and letp be a 9-palindrome. If zp — wn 

for some n>2, then z = 9{z). 

Proof. Let w = zy for some y G S+ . Then p = y(zy)n~l, from which we can obtain 

y = 9(y) and z — 6(z) because p = 9{p) and n — 1 > 1. • 

Proposition 6.37. Let x be a 9-primitive word, u G S + , and q be a non-empty 

9-palindrome. If for some n > 2 and £ > 1, u[9(u)qnu]e G {x,9(x)}-2, then u,q G 

{x,9(x)}+. 

Proof. Let u[9(u)qnu]e = x\ • • • xm for some m > 2 and Xi, . . . , xm G {x, 9(x)}. Let 

u — Xi • • • Xk-\Z\ and [9(u)qnu]e — z2Xk+i • • • xm for some 1 < k < m with Xk = 2122 

and z\ ^ A, i.e. \z2\ < \x\. If z2 — A, then u, [9(u)qnu]e G {x,9(x)}+. Lemma 6.10 

implies 9{u)qnu G {x,9(x)}+ and the same lemma further gives qn G {x, 9(x)}+, 

that is, q G {x, 9(x)}+. 
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Now we prove that z2 cannot be non-empty. Without loss of generality, we 

assume xm = x. So suppose z2 ^ A (0 < \zi\ < \x\). We can apply Lemma 6.24 

to zi[8(u)qnu]e = Xk---xm to get xk+i = • • • — xm = x because [9(u)qnu]e is a 

^-palindrome and \zi\ < \x\. Thus if |x| < \u\, then \z2\ < \u\ and so [9(u)qnu]e = 

z2x
k~l gives x G Suff(u) and hence 9(x) G Pref(#(?j)). These further imply that 

x G Suff(xi • • -Xfc-iZi) and 9{x) G Pref(z2a;fe+i • • -xm ) . Thus x9(x) is a proper infix 

of Xfe+iXfcXfe-i, which is in contradiction with the 0-primitivity of x by Theorem 6.12. 

Therefore, \x\ > \u\, which means k = 1, that is, we have x2 = • • • = xm = x. 

Note that x ^ 9(x) must hold because of Z2Xm~1 being a ^-palindrome, 0 < \z2\ < \x\ 

and x is primitive (and cannot be a proper infix of its square). If X\ = 9(x), then 

u G Pref(0(a:)) D Suff(a;) holds and so u = 9(u). Now Lemma 6.24 would imply 

X\ = x, which contradicts x ^ 9{x). Otherwise (xi = x), u[9(u)qnu]e = xm and 

from this Lemma 6.36 derives u = 9{u). Then we have u(uqnu)e = xm\ in other 

words, (uqnu)e+1 and xm share a suffix of length at least rj — max(m\x\,£\uqnu\). If 

t > 2, then 77 > |x| + |ugnu|, and the Fine and Wilf theorem implies p(uqnu) = x. 

With u(uqnu)e = xm, this implies p(u) = x. However, this contradicts \u\ < \x\. If 

£ = 1, then uuqnu = xm. Using cyclic permutation, we obtain u3qn — x'm, where x' 

is a conjugate of x. This is of the form of LS equation, and Theorem 6.1 concludes 

p(u) = p(q) = x'. Now we reached the same contradiction because \x'\ — \x\. D 

Lemma 6.38. Let w be a 9-primitive word, and w^:..., wm G {w, 9(w)} for some 

m>2. Let u,q G S + such that q is a 9-palindrome with \q\ < \u\. Ifu2 = qw\ • • • wm, 
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then either u,q £ {w, 9(w)}+ or u = qr for some non-empty 9-palindrome r. 

Proof. It is trivial that the case u,q € {w,9(w)}+ is possible. Hence assume that 

u, q $ {w, 9(w)}+. Without loss of generality, we can also assume that wm — w. Let 

u = qr for some r e E + . Then rqr = w\ • • • wm. We prove that r is a ^-palindrome. 

Let r = Wx • • • Wk-\Z\ — Z2ivm-k+2 • • • wm for some k > 1, where z\ € Pref (wk) and 

22 £ Suff(u;m_fc+i) with |zi| = l^l < \w\- If zi — >̂ then r € {w,9(w)}+ and then 

rqr = u;m---u;i implies q € {«;, 0(ti;)}+ by Lemma 6.10, but this contradicts the 

assumption. Thus z\ ^ A. Then we have two cases, k > 2 and k = 1. Lemma 6.11 

(for A; = 2) or Theorem 6.12 (for A; > 3) works to give w\ = • • • = Wk-i = 9{w) and 

wm-k+2 — • • • — wm — w. Thus, z2 = 9(zi) and hence r = 9(r). Even for A; = 1, if 

u>i 7̂  wm, then r € Pref(0(«;)) n Suff(u;) so that r = 9{r). Otherwise w — rqp = (ĵ r 

for some qp € Pref(g) and QS € Suff(</). Since g = 9(q), qs = 9(qp) so that we have 

r% = G(qp)r. According to Proposition 6.7, r = 0(r). • 

Proposit ion 6.39. Let w be a 9-primitive word, and wi,...,wm £ {w,9(w)} for 

some odd integer m > 3. Let u,q e E +
 SMC/I that q is a 9-palindrome with \q\ < \u\. 

If u2 = qw\---wm, then w = 9(w). If additionally \u\ > 2\q\ holds, then p(u) — 

p{q) = w. 

Proof. Lemma 6.38 implies that either q,u € {w,9(w)}+ or u = qr for some non­

empty ^-palindrome r. In the former case, let u 6 {w,9(w)}k for some k > 1 and 

we can see q € {u;, 9(w)}2k~m and 2/c — m is odd because m is odd. Then q — 9{q) 
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implies w = 9(w), and hence u, q € w+. In the latter case, we have rqr = w\ • • • wm. 

This implies «>(m+i)/2 = #(w(m+i)/2) (i-e, w = 0(w)) because rqr is a ^-palindrome 

and m is odd. 

Now we consider the additional hypothesis \u\ > 2\q\. Since 2|u| = |g| + m|u;|, 

\u\ = (\q\ + rn\w\)/2 > 2\q\, which leads to \q\ < ^m\w\. As seen above, rqr — wm, 

hence \r\ = (m\w\ — \q\)/2 > |m|iy| > |w| as m > 3. With this, the equation 

rqr = u;m gives r = u;fcu;p = u;̂ u;fc for some k > 1, w'p £ Pref(iy), and w's G Suff(zy). 

Since w is primitive, w'p and u;̂  have to be empty. Consequently p(r) = p{q) — w 

and hence p{u) — w by using Lemma 6.10. • 

6.4.3 ExLS equation of the form w2w3W4 = v\ • • • vnw\ • • • wm 

In this subsection, we prove that an ExLS equation of the form u2uzu^ = v\ • • • vnwi • • -w., 

implies that u,v,w € {t, 0(t)}+ for some t € E+ . We have already seen that for this 

purpose it suffices to show that any non-trivial equation of this form cannot hold. 

Recall that we assumed Ui = u, vi — v, and wm = w, and that Proposition 6.30 

allows us to assume \v\ ^ \w\. 

We can apply Proposition 6.29 to the non-trivial equation to obtain that n is an 

even integer except 2, v\ = • • • = vn/2 = v and vn/2+i = • • • = vn = 9(v) (i.e., v\ • • • vn 

is a 0-palindrome), u = [r(tr)V(ir)?+'7]n'/2'"1r(tr)l(ri)J, and v — r(tr)V(ir)l+-7 for 

some i > 0, j > 1, and non-empty 0-palindromes r,t such that rt is primitive. 

Actually rt has to be ^-primitive due to Corollary 6.22 because v £ {r, t}+ is assumed 
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to be ^-primitive. Let us now study all possible values of U3U4. 

Proposit ion 6.40. Under the setting of Problem 6.1, if U1M2W3M4 = u4, then 

u,v,w E {t, 0(t)}+ for some i G S + . 

Proof. According to the representations of u and v in terms of r and t, we obtain 

w1---wm = (try[{r(trY)2{try}n/2-l[(rty{r{try)2}^2~l(rty . 

This expression is a ^-palindrome of even length and hence m has to be even 

(Lemma 6.4). Therefore, w\--- wm/2 = [(£r)J(r(£r) l)2]n/2~1(£r)J, and this was proved 

to be primitive in Proposition 6.34. Moreover, its right hand side is the catenation of 

two ^-palindromes pi = (tr) J[r(ir)V(tr) J+J]" / '2_2r(ir)*(ri) J and p2 = r(tr)1. Propo­

sition 6.20 gives p<i = r(tr)1 E {w,9(w)}+. Furthermore, applying Proposition 6.16 

top1p2 = ( t r) ' [ r( ir)V(ir) l +J]"/2-2r( ir) ' • p2 • (try gives {try E {w,9(w)}+. Finally 

Lemma 6.10 derives r,t E {w,9(w)}+ from r(tr)1, (tr)3 E {w,9(w)}+, but this con­

tradicts the #-primitivity of rt. As a result, there are no solutions to the non-trivial 

equation. • 

Proposit ion 6.41. Under the setting of Problem 6.1, if U1U2U3U4 — u39(u), then 

u,v,w E {t, 9(t)}+ for some t E S + . 

Proof. Since U4 is 9(u) instead of u, we have w\ • • -Wm = x2(r(tr)1)2, where x = 

(try[(r(tr)l)2{rty\nl2-lr{tr)l(rty. Claim 6.33 gives that wx = • • • = wm = w, and 
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hence wm = x2{r{tr)%)2. This is a classical LS equation; thus Theorem 6.1 is appli­

cable to conclude that p(x) = p{r{tr)%). However, this contradicts the primitivity of 

x obtained in Proposition 6.35 because \x\ > \r(tr)%\. • 

Proposition 6.42. Under the setting of Problem 6.1, if uiUiU^u^ = u29(u)u, then 

u,v,w € {t, 9(t)}+ for some t e S + . 

Proof. Since u^ ̂  u^, w\ = • • • = wm — w due to Claim 6.33. Using the representa­

tions of u and v by r and t, we can see that u^u^ = 9{u)u is equal to both sides of 

the following equation: 

By catenating (r(tr)J)4 to the left of both sides, we get (r(tr)l)6wm = x2, where 

x = (r(tr)l)2[(r{tr)l)2{try]nl2-lr(tr)l{rty. Then, Theorem 6.1 implies that p(x) = 

p(r{tr)1) = w. Since x contains r{tr)% as its infix, the share of primitive root between 

x and r(trY gives p(r(tr)1) — p((rty). We deduce from this using Lemma 6.9 that 

rt would not be primitive, which contradicts our hypothesis. • 

Proposition 6.43. Under the setting of Problem 6.1, if Ui^u^u^ = u29(u)2, then 

u,v,w G {£,9(t)}+ for some t e E + . 

Proof. Recall that v\ • • • vn is a 0-palindrome. Since u29{u)2 is a ^-palindrome, 

9{w\ • • • wm) is one of its prefixes and the assumption |u;i • • -wm\ < \vi • • • vn\ implies 
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that 9(w\ • • • wm) € Pref(v\ • • • vn). Hence w\ • • • wm G Suff{v\ • • -vn) and now we 

have (wi • ••wm)2 G Suff(u29(u)2). 

We prove that this suffix is long enough to apply the extended Fine and Wilf 

theorem. Since (n — l)|i>| < 2\u\ and n > 4, we have \v\ < ||w| and, in turn, 

n\v\ < 2\u\ + | |u | = ||w|. From this we obtain m\w\ > | | « | . Then, 2m|u;| — (\w\ + 

2|u|) > (2m - l)\w\ - \m\w\ = {\m - l)\w\ > 0 since m > 3. Thus, u29(u)2 and 

(wm • • • wi)2 share a suffix of length at least 2|ti| + |iy| and Theorem 6.6 concludes that 

u € {w,9(w)}+ because w is ^-primitive. Now it is clear that also v G {«;,0(u;)}+, 

but in fact v G {w,9(w)} must hold because v is also ^-primitive. However this 

contradicts the assumption that \v\ ^ \w\. D 

6.4.4 ExLS equation of the form u9(u)usU4 = v\- • • vnw\ • • • wm 

Note that in the following propositions, we consider only the non-trivial equations; 

hence Proposition 6.30 allows to assume \v\ ^ |io|. 

Using Proposition 6.29, u9(u) = (pq)n~1p and v\ = • • • = vn = v = pq for some 

non-empty ^-palindromes p, q. Unlike the case considered before, in the current case 

n can be odd. In fact, if n is odd, then u — (pq^'^^y, where p = y9(y) for some 

y e S+ ; while if n is even, then u = (pq)nl2~lpx, where q = x9(x) for some x € S + . 

Again, we consider the four cases associated with the four possible values of u3«4. 

The last two, u$ = U4 = u and 143 = U4 = 9(u), are merged and studied in two 

separate propositions depending on the parity of m instead. 

file:///m/w/
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Proposition 6.44. Under the setting of Problem 6.1, if ui^u^Ui = u9(u)u9(u), 

then u,v,w G {t,9{t)}+ for some t G E+ . 

Proof. In this setting, u3u4 = u9(u) = qw\ • • -Wm. Since both u9(u) and q are 0-

palindromes, we can employ Claim 6.33 to obtain wi = • • • = wm — w. Now the 

equation turns into the LS equation (u9(u))2 — vnwm, and hence p{v) = p(w) due 

to Theorem 6.1. Both v and w being primitive, this contradicts the assumption 

\v\ 7̂  \w\ and consequently the existence of non-trivial solutions. • 

Proposition 6.45. Under the setting of Problem 6.1, if uiu-zu^u^ = u9(u)9(u)u, 

then u,v,w G {t, 9(t)}+ for some t G S + . 

Proof. Recall that u9(u) = {pq)n~lp. Claim 6.33 implies that 9{u)u = qwm with 

q — w'wk~l for some 1 < k < m and a non-empty proper suffix w' of w. 

Case 1 (n is odd): Then we have 9{u)u — qwm = a;sx, where xs = 9(y)q(pqYn~l^2~1y 

and a; = 9(y)(pqYn~1^2y; note that xs G Suff(x). One can easily calculate that 

\w\ = ^[n\p\ + (n — 2)\q\] and |xs| = \{n — l)(|p| + \q\), and hence |xs| — \w\ = 

(T"""2)2(^T1)~2bl + (r"~22m"1)+2|gl' w h i c h i s Positive because n,m > 3. Thus we can 

say that x2 and u;m+fc share a prefix of length at least \x\ + \w\ so that by the Fine 

and Wilf theorem, p(x) = p(w) = w. Starting from 9(y)yqwm = 9(y)yxsx = x2, 

we can verify that 2\x\ — m\w\ = \pq\, that is, \pq\ is a multiple of \w\. The suffix 

of x of length \pq\ is 9(y)qy, which is w3 for some j > 2 because |pg| = |w| 7̂  |io|. 

Therefore, this conjugate of v is not primitive, either. This is a contradiction with 
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the 0-primitivity of v. 

Case 2 (n is even): In this case, u = (pq)n^2~lpx for some i £ E + such that 

q — x9(x). Substituting this into 9(u)u — qwm gives 

[9{x)px]n/2-19(x)p2x[e(x)px]n^2-1 = x9(x)wm. (6.2) 

Prom this equation, we can obtain x — 9{x) and hence px = xz for some z e E + . 

If \x\ > \p\, then Lemma 6.2 implies p(x) = p(p) so that v = pq = px2 would not 

be primitive. Hence \x\ < \p\ must hold and under this condition, the solution of 

px = xz is given by p = xy and z — yx for some y G S + . Since p = 9(p), we have 

p = xy = 9{y)x. Proposition 6.7 gives x = r(tr)z and y = (tr)3 for some i > 0, 

j > 1, and ^-palindromes r, t such that rt is primitive. Both of r and i should 

be non-empty; otherwise, p{p) = p{x) and v = pq = pa;2 would not be primitive. 

Substituting these into Eq. (6.2) yields the following equation. 

[(tr)V(ir)J[r(tr)V(ir)2+Jr(tr)T /2_1]2 = ™m 

Since w is ^-primitive, this equation means that m has to be even. Then wm'2 = 

(tryr(try[r(tr)zr(try+:>r(try}n/2-1. By catenating (r(tr)%)2 from the left to the both 

sides of this equation, we obtain an LS equation [r(try]2wm^2 = [r(ir)V(tr)*+Jr(tr)l]n/2. 

Theorem 6.1 gives p(r(tr)1) = p(r(tryr(try+3r(try) and Lemma 6.9 reduces it to 



www.manaraa.com

229 

p(r) = p(t), but this contradicts the primitivity of pq = r(tr)z+3ir(tr)%)2. • 

Proposition 6.46. Under the setting of Problem 6.1, ifu\U2 = u9(u), u^ = u^, and 

m is odd, then u,v,w G {t, 9(t)}+ for some t € E+ . 

Proof. We have U3U4 = qwi---wm. Since U3 — 1*4 and \q\ < \u\, we can employ 

Proposition 6.39 to obtain w = 9(w). Moreover, when n > 5, we have |u| > 2\q\ 

and the proposition also gives piu$) = p(q) = w. Since w = 9(w), we can see that 

p(u) — w. Then p(p) — w because p(u) — p(q) = w and pq G Pref(w). However, 

Pip) = Pil) means that v = pq would not be even primitive. Therefore in the 

following let n be either 3 or 4. 

First we consider the case when u3 = u. Then we have either ipqy)2 = qwm 

(when n — 3) where p — y9(y), or (pqpx)2 = qwm (when n = 4) where q = x9{x), 

for some x,y € S + . In both cases, if \p\ < \q\, Lemma 6.2 can be applied and we 

have p(p) — p(q), so v — pq would not be even primitive. Hence \p\ > \q\ must hold, 

but then \u\ > 2\q\ and then Proposition 6.39 implies p(p) = p(q). 

Next we consider the case when U3 = 9(u) and n — 3. Then 9(u) = 9{y)qp so 

that 9{y)qp9{y)qp = qwm. Let 9(y)q = qz for some z with \y\ = |z|. Using p§ = 

y9(y)q — yqz, from 9(y)qp9(y)qp — qwm we can obtain zyqzzy9(y) = wm. Since 

w = 9(w), this equation gives z = y = 9{y). Then 0(y)g = qz turns into yg = qy 

and hence p(y) = p(q) by Theorem 6.3. This however implies that v = y9(y)q would 

not be ^-primitive. 
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Finally we consider the case when u3 — 9(u) and n = 4. Then we have 

[9(x)pqp]2 = qwm, which gives x = 9{x) because q = x9(x). Then 9(u)2 — x2wm, 

which is an LS equation and Theorem 6.1 implies p(9(u)) = p{x) = w. However 

since x2p — qp G Suff(^('u)), we also get p(p) = w (otherwise w would be a proper 

infix of its square in a;2). This leads to the usual contradiction that v — px2 would 

not be primitive. • 

Proposition 6.47. Under the setting of Problem 6.1, ifu\v,2 = u9(u), u% = u^, and 

m is even, then u,v,w G {t, 9(t)}+ for some t G S + . 

Proof. As before we consider only non-trivial equation so that we have U3U4 = 

qwi • • -Wm and \v\ 7̂  \w\. Lemma 6.38 gives two cases, but actually it suffices to 

consider the case when u = qr for some non-empty ^-palindrome r. 

First we consider the case when U3 — u and n is even. Then \{pq)nl2~lpxY — 

qw\---wm, where q = x9(x) for some x G S + . If \p\ < \q\, then pq = qp and 

v would not be even primitive. Hence let p — qz\ for some z\ G S + . Then r = 

Z\x9(x)(pq)nl2~2x9(x)zix. Since r = 9(r), this equation gives z\X = 9{z\x) and x = 

9{x). Thus we have z\x = x9(zi) and p = x2z\ = 9{zi)x2. Then x3zi = x9(zi)x2 = 

z\Xz so that p(x) = p{z\) by Theorem 6.3. However, this result contradicts the 

primitivity of v = pq = x2z\x2. 

The second case is when u3 = u an n is odd. We have [(pq)(n~l^2y]2 = qw\ • • • wm, 

where p — y9(y). From this equation, q is of even length so let q = x9(x). If \p\ < \q\, 
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then we can apply Lemma 6.2 to the equation above to prove that p(p) = p(q), 

which contradicts the primitivity of v. Thus we can let y — XZ2 for some Z2 € S+ . 

Then [(xz29(z2)9(x)x9(x)yn~iM2xz2]
2 = x9{x)wx • • -wm. We can easily check that 

Wm/2+i • • • Mm = Z2[6(z2)9(x)x9(x)xz2]^n~1^2. According to Proposition 6.37, we 

can deduce from this that Z2,9(x)x G {w, 9(w)}+ and this further implies x G 

{w,9(w)}+. However then v = pq — xz29(z2)9(x)x9(x) would not be ^-primitive. 

Thirdly we consider the case when U3 = 9(u) and n is even. We have [9(x)p(qp)n/2~ 

x9(x)wi • • • wm, and this equation immediately gives x = 9{x). Then p(qp)n^2~1xp(qp) 

xwi • • • wm. Since the left-hand side and x are 0-palindromes, we have either x € 

{w,9(w)}+ or Wi = • • • = wm = w by Lemma 6.32. In the former case, 9{u)2 = 

x2wi---wm G {w,9(w)}+ and hence 9(u),u G {iu,9(w)}+ (Lemma 6.10). Then 

vn — u9(u)x9(x) G {w,9(w)}+, and hence v G {w,9(w)} because of Lemma 6.10 

and the ^-primitivity of v, w. However, this contradicts the assumption \v\ ^ \w\. In 

the latter case, we have 6{u)2 = x2wm and hence p{9{u)) = p(x) — w (Theorem 6.1). 

However since qp — x2p G Suf[(9(u)), we reach the contradictory result p(p) = w. 

The final case is when u3 = 9{u) and n is odd. Then [9(y)(qp)(-n~1^2]2 = 

qwi---wm, where p = y9(y) for some y G S + . Let 9(y)q = qz± for some z± 

with \y\ — \z4,\. Then r = Z4:(y9(y)q)(n~1M2y9(y), which is a ^-palindrome so 

that Z4 = y = 9(y). Now we can transform 9{y)q = 924 into yq — qy and hence 

p(y) = p(<7) (Theorem 6.3). However, then v = y9(y)q would not be ^-primitive. • 
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Combining the results obtained in this section, we can give a positive answer to 

Problem 6.1. Furthermore, with the result proved in [3] (also see Table 6.1), this 

positive answer concludes the following theorem, the strongest positive result we 

obtain on the ExLS equation. 

Theorem 6.48. Let u,v,w € S + and let Ui,...,ut € {u, 9(u)}, Vi,...,vn € 

{v,9(v)}, and u>i,... ,wm € {w,9(w)}. For £ > 4 and n,m > 3, the equation 

Ui • • • Ue = Vi • • • vnWi • • • wm implies u,v,w G {t, 9(t)}+ for some t € S + . 

6.4.5 The case £ < 3 of the ExLS equation 

We conclude this section with some examples which prove that an extended Lyndon-

Schutzenberger theorem cannot be stated for £ = 2, and for some particular cases 

when £ = 3. 

Example 18. Let E = {a, b} and 9 be an antimorphic involutions on S* denned 

as 9(a) = a and 9(b) = b. Let v = a2mb2 and w = aa (i.e., w = 9(w)) for some 

m > 1. Then vnwm = (a2mb2)na2m. By letting either u = (a2mb2)nl2am if n is even 

or u = (a2mb2Yn~1^2a2mb otherwise, we have u9(u) = vnwm. Nevertheless, there 

cannot exist a word t such that u,v,w G {t, 9(t)}+ because v contains b, while w does 

not. In conclusion, for arbitrary n, m > 2, (2, n, m) does not impose ^-periodicity. 

Next we examine briefly the (3, n, m) ExLS equation. The actual problem which 

we address is formalized as follows: 
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Problem 6.2. Let u,v,w € E+ and integers n,m > 3. Then, let ui,u2-,u3 G 

{u,9(u)}, vi,...,vn G {v,9(v)}, and w\,...,wm € {w,9(w)}. Does the equation 

U1U2U3 — vi • • • vnW\ • • • wm imply u,v,w € {t, 9(t)}+ for some t G E + under all of 

the following conditions? 

1. v and w are ^-primitive, 

2. | « i - - - i ; n | > \wx---Wml, 

3. Ui = u, v\ = v, and wm = w. 

As shown from now by examples, the general answer is "No". More significant is 

the fact that depending on the values of variables U2, W3 and on the lengths of V\ • • • vn 

and wi • • • wm, the (3, n, m) ExLS equation exhibits very complicated behavior. 

First we present a parameterized example to show that for arbitrary m > 2, 

(3,3, m) does not impose ^-periodicity. 

Example 19. Let E = {a, b} and 9 be the mirror image over E*. For u = (abb)2m~lab, 

v = (abb)m~lab, and w = (bba)3, we have u29(u) = v9(v)2wm for any m > 2. 

Nevertheless, there does not exist a word t G E + satisfying u,v,w G {t, 0(t)}+. 

In this example, the border between v6{v)2 and wm is located at U2- Intriguingly, 

as long as u\U2Uj, = uu9(u) we cannot shift the border to u$ without imposing 

u,v,w G {t,9(t)}+ for some t G E + . 

Proposit ion 6.49. For any n,m > 3, if uu9(u) = v\ • • • vnWi • • • wm and n\v\ > 

2\u\, then u,v,w G {t, 9(t)}+ for some t G E + . 

file:///wx---Wml
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Proof. It suffices to consider the case when (n — \)\v\ < 2\u\ < n\v\, otherwise 

Theorem 6.6 applies. As done in the analyses on the ExLS equation with £ = 4, we 

can assume that both v and w are ^-primitive. Then, using Proposition 6.29, we 

obtain that n is even, u = [r(t7")V(tr),(tr)-']n/2_1r(£r),(rt)J and v = r(tr)%r(tr)%(tr)3 

for some i > 0, j > 1, and two non-empty ^-palindromes r, i such that rt is primitive. 

Moreover, 9(u) = (tr)-?r(ir)J[(ri)Jr(ir)V(ir)z]"/'2_1 = r(tr)V(tr)zii>i • • -u;m. Hence if 

i > 1, then tr = rt, which contradicts the primitivity of rt (Theorem 6.3). Thus we 

have 

(tr)Jr[(rt)Jr2]^2"1 - r2
Wl •••wm. (6.3) 

If |*| < lrl) then t G Pref(r) from which rt € Pref(r2ioi • • • wm), and finally 

rt = tr, contradicting the primitivity of rt again. If \r\ < \t\ < 2|r|, then we can 

write rrs = tr for some s € E+ such that |r| + |s| = |i|. Since s £ Suff(r) and r 

is a 0-palindrome, 9(s) £ Pref(r), i.e., r = 0(s)ri for some r\ £ E+ . Then, rrs = 

r0(s)ris = tr, so r9(s) = t because their length is the same. Since 9(s) £ Suff (t) and 

t is a ^-palindrome, it holds that s £ Pref(t) and rrs £ Pref (rrt). Therefore, rrt and 

tr share a prefix of length \t\ + \r\ so that Theorem 6.3 concludes that p(r) = p(t), 

contradicting the primitivity of rt. 

Thus both i = 0 and \t\ > 2|r| must hold. Eq. (6.3) implies that r2 £ Pref(t), 

that is, r2 £ Suff(t) (t is a ^-palindrome), and hence r4 £ Suff((rt)Jr2). So we 

can let r4 = ziitffc+i • • -wm for some k > 1 and z\ £ Suff(w;fc). If z\ = A, then 
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this equation gives r G {w, 9(w)}+ because w is assumed to be ^-primitive due 

to Theorem 6.5. Then Eq. (6.3) means (tr)Jr[(r*)Jr2]n/2-1 G {w, 9(w)}+. Using 

Proposition 6.16, we obtain t G {w,9(w)}+, but this contradicts the 0-primitivity 

of v. Otherwise, catenating r2 from the left to the both sides of Eq. (6.3) gives us 

r[{rtyr2]n/2 = Z\Wk+i • • • wmu>i • • • wm. Note that the left hand side of this equation 

is a 0-palindrome so that Lemma 6.24 implies w\ = • • • = wm — w. Now catenating 

r in the same way to Eq. (6.3) gives [(rt)3r2]n^2 = r3wm. This is in the form of 

LS equation and Theorem 6.1 implies p((rt)Jr2) = p(r) = w because w is primitive. 

From this we further deduce that p(t) = w. However, then rt would not be primitive. 

• 

Once we change U1U2U3 from u29(u) to u9(u)2, it becomes possible to construct a 

parameterized example for (3, 3, m) with the border between v\---vn and w\ • • • wm 

on 113, though it works only when m is a multiple of 3. 

Example 20. Let S = {a, b} and 9 be the mirror image over £*. For i,j > 0, 

let u = (aby+i+1(ba)2l+2i+2b(aby, v = (a6),+J+1(&a),+2j+16, and w = ab. Then 

u9(u)2 = v3w2(l+:i+1)9(wy+i+1, but we cannot find such t that u,v,w G {t,9(t)}+. 

Next we increase n to 4, and prove that still we can construct a parameterized 

example of the (3,4, 2i) ExLS equation. 

Example 21. Let S = {a, 6} and 0 be the mirror image over S. For i > 1, let u = 

a4(6a3)'(a36)J, w = a4(6a3)'"16a2, and «; = ba3. Then we have u3 = v29(v)2wl9{w)\ 
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/ n m 
> 4 > 3 > 3 

3 > 5 > 5 
3 4 odd 
3 4 even 
3 3 > 3 

one of them is 2 

^-periodicity 
YES 

? 

? 

NO 
NO 
NO 

Theorem 6.48 

Example 21 
Example 19 
Example 18 

Table 6.2: Updated summary on the results regarding the extended Lyndon-
Schiitzenberger equation 

but there does not exist a word i e S + satisfying u,v,w 6 {t, 9(t)}+. 

The cases (3, n, m) when n = 4 and m is odd, as well as when m, n > 5, remain 

open. 

6.5 Conclusion 

In this paper, we proved several consequences of the overlap between pseudo-primitive 

words. They made it possible to prove that, for a given antimorphic involution 

9 and words u,v,w € S + , if I > 4 and n,m > 3, then the ExLS equation 

u\ • • • Ui = vi • • • vnwi • • • wm implies that u,v,w € {t, 0(t)}+ for some t. This is 

the strongest result obtained so far on the ExLS equation. Our case analyses on 

(3, > 3, > 3) ExLS equations demonstrated that these tools may not be sufficient 

to provide a complete characterization of ExLS equations. Further investigation on 

the overlaps of ^-primitive words, reduction schemes from ExLS equations to LS 

equations, and the weak defect effect seems promising and required to fill the gap 
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in Table 6.2. 
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Chapter 7 

On pseudoknot-freeness 

This chapter introduces the author's first journal publication1 in his Ph.D. program: 

L. Kari and S. Seki. 

On pseudoknot-bordered words and their properties. 

Journal of Computer and System Sciences, 75:113-121, 2009. 

The conference version of this paper was presented at 2nd International Work­

shop on Natural Computing (IWNC): 

L. Kari and S. Seki. 

Towards the sequence design preventing pseudoknot formation. 

In IWNC, PICT1, pages 101-110, Springer, 2009. 

Summary: We study a generalization of the classical notions of bordered and un-

bordered words, motivated by biomolecular computing. DNA strands can be viewed 

1A version of this chapter has been published. 
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as finite strings over the alphabet {A, G, C, T}, and are used in biomolecular com­

puting to encode information. Due to the fact that Ais Watson-Crick complementary 

to Tand Gto C, DNA single strands that are Watson-Crick complementary can bind 

to each other or to themselves forming so-called secondary structures. Most of these 

secondary structures are undesirable for biomolecular computational purposes since 

the strands they involve cannot further interact with other strands. This paper 

studies pseudoknot-bordered words, a mathematical formalization of pseudoknot-

like inter- and intra-molecular structures. In this context, pseudoknot-unbordered 

words model DNA or RNA strands that will be free of such secondary structures. We 

obtain several properties of pseudoknot-bordered and -unbordered words. We also 

address following problem: Given a pseudoknot-unbordered word u, does {u}+ con­

sist of pseudoknot-unbordered words only? We show that this is not generally true. 

We find that a sufficient condition for {u}+ to consist of pseudoknot-unbordered 

words only is that u be not primitive. All of our results hold for arbitrary anti-

morphic involutions, of which the DNA Watson-Crick complementarity function is 

a particular case. 
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On pseudoknot-bordered words and their 
properties 

Lila Kari and Shinnosuke Seki 

Department of Computer Science, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. 

7.1 Introduction 

In this paper we study pseudoknot-bordered and pseudoknot-unbordered words, 

which are generalizations of the classical notions of bordered and unbordered words, 

motivated by the need of optimally encoding information as DNA strands for biomolec-

ular computing purposes. 

A DNA single strand is a linear chain made up of four different types of nu­

cleotides, each consisting of a sugar-phosphate unit and a base (Adenine, Cytosine, 

Guanine or Thymine). The sugar-phosphate units are linked together by strong 

covalent bonds, to form the backbone of the DNA strand. Since nucleotides may 

differ only by their bases, a DNA single strand can be viewed as a string over the 

DNA alphabet of bases {A,C, G,T}. A DNA single strand has an orientation, with 

one end known as the 3' end, and the other known as the 5' end, based on their 

chemical properties. By convention, a word over the DNA alphabet represents a 

DNA single strand in its 5' to 3' orientation. An essential biochemical property of 

DNA single strands is that of Watson-Crick complementarity, wherein A can bind to 

T, and C can bind to G by weak hydrogen bonds. (In the case of RNA, T is replaced 
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by U, and U is complementary to A, though the binding U-G may also occur.) Two 

Watson-Crick complementary DNA single strands of opposite orientation can bind 

to each other to form a DNA double strand. This and other biochemical properties 

of DNA have all been harnessed in biomolecular computing [1], in which information 

is encoded as DNA single strands, and processed through bio-operations [4]. 

One of the problems encountered when encoding information as DNA single 

strands is that the Watson-Crick complementarity often results in information-

encoding DNA single strands either folding onto themselves to form intra-molecular 

structures, or interacting with each other to form inter-molecular structures. While 

these so-called secondary structures optimize biochemical determinants such as the 

Gibbs free-energy [19] and often have a significant role in determining the biochem­

ical functions of real-life nucleic acids (DNA or RNA), in DNA computing they are 

often seen as a disadvantage. This is because it is very likely that the secondary 

structure formation of DNA strands will prevent them from interacting with other 

DNA strands in the expected, pre-programmed ways. Consequently, the property 

of a set of information-encoding strands to be free of unwanted intra- and inter-

molecular structures has been intensively studied from many different points of 

view. These include design of algorithms based on free energy [2, 3, 16], algebra 

[13], and formal language theory [8, 9, 10, 11]. 

In this context, the notion of antimorphic involution 9 was proposed, as the 

most natural mathematical formalization of the notion of DNA Watson-Crick com-
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' 'e(x) ' ^ \ ' 'e(x) 

Figure 7.1: Inter- and intra-molecular structures which 0-unbordered words avoid. 

plementarity [7, 10, 12]. Using this notion, Kari and Mahalingam [11] introduced 

and investigated the concept of a 0-unbordered word, as a formalization of DNA 

strands that avoid some of the most common inter- and intra-molecular structures. 

A ^-bordered word is a nonempty word which has a nonempty prefix x, and a suffix 

9(x). If the alphabet under consideration is the DNA alphabet, and 9 is the Watson-

Crick complementarity function, then a 0-unbordered word represents a population 

of identical DNA single strands that are free from both inter-molecular structures 

such as the ones shown in Figure 7.1 (Left), and hairpins (words of the form xj9(x), 

shown in Figure 7.1, (Right)), one of the most common DNA intra-molecular struc­

tures. In addition to being relevant for DNA computing, the notions of ^-bordered 

and 0-unbordered words are generalizations of classical notions in combinatorics of 

words, namely those of bordered [5] (a.k.a. overlapping [22, 25], unipolar [23] words), 

respectively unbordered words (a.k.a. d-primitive, dipolar words). 

The pseudoknot is another intra-molecular structure of biological significance, 

0' 
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5 ' -UGC- | 

C - - G 
G - - C 
A - - U 
G - - C 
G - - C 

G 
G 
U - - A 
U - - G 
G - - C 
G - - C 
C - - G 

S G - - C 

A 
A 

-AAAAAA— 3' 

Figure 7.2: Left: A pseudoknot found in E. Coli transfer-messenger-RNA. (From 
Rfam [6]). Right: A depiction of a string modelling the pseudoknot in Left, as a word 
Vixv2yv39(x)v49(y)v5. Here, v\ = UGC, x = CGAGG, v2 = G, y = GCGGUU, v3 = GG, 
Vi = UAAAAA, and v5 = AAAAAA. 

formed primarily by RNA strands. A pseudoknot found in E. Coli transfer-messenger-

RNA is shown in Figure 7.2 (Left). This type of pseudoknot, which is the simplest 

and hence the most common, can be modelled as a word of the form Vixv2yv39(x)v4:9(y)v5, 

as shown in Figure 7.2 (Right). 

In this paper, we investigate not only such 0-pseudoknot-bordered words, but 9-

pseudoknot-unbordered words, the latter being models of DNA or RNA strands that 

will not form pseudoknot-like inter- and intra-molecular structures. A nonempty 

word w is #-pseudoknot-bordered if w — xya = 09(yx) for some words x, y, a, 

and /3. Thus, 0-pseudoknot-unbordered words avoid both inter-molecular bonds 

between identical strands of the type depicted in Figure 7.3 (Left), and intra­

molecular structures of the form xyj9(x)9(y) shown in Figure 7.3 (Right). Note 

that this a particular case of the general model of pseudoknots, namely the case 
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Figure 7.3: An inter-molecular structure and intra-molecular structure which 9-
pseudoknot-unbordered words avoid. 

where t»i = V2 = ^4 = ^5 = A. 

The paper is organized as follows. Using the notations and terminology given in 

Section 7.2, we propose the notion of 0-pseudoknot-bordered words in Section 7.3 

and present some of their basic properties. We also show that the notion of 9-

pseudoknot-bordered word is a proper generalization of that of ^-bordered word, 

and thus also properly generalizes the classical notion of bordered word. Since 

information-encoding DNA single strands often need to be concatenated together 

in the course of biocomputations, another problem of interest, which we address in 

Section 7.4, is whether the property of being pseudoknot-unbordered is preserved by 

catenation. Here we address the simplest case of this problem: Given a pseudoknot-

unbordered word u, are all the words in {u+} still pseudoknot-unbordered? This 

turns out not to be always the case. However, we find a sufficient condition for a 9-

pseudoknot-unbordered word u to satisfy the property that any power of u remains 

^-pseudoknot-unbordered: the condition is that u be non-primitive (Corollary 7.13). 
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Section 7.5 discusses possible further directions of research. 

7.2 Preliminaries 

In this section we introduce the terminology and notations used in the paper. For 

details, we refer the reader to [21, 22, 25]. 

Let E be a finite alphabet. We denote by E* the set of all words over E, and 

by E+ the set of all nonempty words over E. Let A be the empty word. Then 

E+ = E* \ {A}. For a word w € E*, |io| denotes the length of w. A word u is said 

to be a prefix (suffix) of w if w = uv (resp. w = vu) for some u e S ' ; here if v ^ A, 

then the prefix (suffix) u is said to be proper. Let Pref(w) (Suff(u;)) be the set of 

all prefixes (resp. suffixes) of w. 

A word z € E* is said to be a border of a word w € E* if w = uz — zv for 

some words u and « in S*. A nonempty word is said to be bordered if it admits 

a nonempty border, and it is said to be unbordered otherwise. A word w € E+ is 

called primitive if it cannot be written as a power of another word, i.e., w = un with 

u e E+ implies n — 1. For a word w e E+ , the shortest u e E+ satisfying w = un 

for some n > 1 is called the primitive root of w. It is well known [17] that every 

nonempty word has a unique primitive root. Moreover, we have the following result 

due to Lyndon and Schiitzenberger. 

Theorem 7.1. For u, v € E+ , uv = vu implies that u and v have the same primitive 
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root. 

For a word w G E*, a word v G E* is called a cych'c permutation of u; if there 

exist two words x, y G E* such that w = xy and v = yx. We denote the set of all 

cyclic permutations of w by Cp(io), that is, Cp(ttf) := {yx | w — xy,x,y G E*}. 

Moreover, for a language L C S*, we define Cp(L) := (J«,eL Cp(u;). 

An involution 9 : E —> E of a set E is a function such that 02 equals the identity 

function, i.e., 9(9(a)) = a for all a G E. A morphism (antimorphism) 9 on E* is a 

function such that 9(xy) — 9(x)9(y) (resp. 9(xy) = 9(y)9(x)) for all x,y G E*. A 

d-morphism is a generic term that refers to a function that is either a morphism or 

an antimorphism. An involution 9 can be extended to a function 9 : 2E* -» 2E*, 

for a given language L C E*, as follows: 9(L) :— {9(w) \ w G L}. In order 

to prove that the notion of 0-pseudoknot-bordered word is a proper generalization 

of the notion of a bordered word, in Section 7.3 we consider both morphic and 

antimorphic involutions. However, the problem of investigating whether catenations 

of pseudoknot-unbordered words have the same property is motivated mainly by 

DNA/RNA computing. Thus, in Section 7.4 we focus only on the mathematical 

formalization of the Watson-Crick complementarity, i.e., we consider only the case 

of antimorphic involutions. 

A few words about morphic and antimorphic involutions are in order. Note that, 

if the alphabet E has m letters, and if we regard involutions that are isomorphic 

to each other as identical, the number of different involutions on E* is [m/2j + 1. 
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For example, on a binary alphabet £ = {a, b}, there exist only two essentially 

different involutions: 9 defined as 9(a) :— b and 9(b) := a, and the identity function. 

Each of these [m/2j + 1 involutions can be extended to a morphic or antimorphic 

involution. With applications to the Watson-Crick complementarity in mind, herein 

we deal only with functions that are not the identity function. Thus, implicitly, we 

also exclude singleton alphabet sets. Note also that for any d-morphic involution 

9 that is not the identity, there exist two distinct characters a, b € S such that 

9(a) = b and 9(b) = a. We assume that in all the examples of this paper, for a given 

non-identity d-morphic involution 9, such a, b € E are chosen. 

7.3 #-pseudoknot-bordered words 

In this section we propose the notion of 9-pseudoknot-bordered words for a morphic 

or antimorphic involution 9. If we consider the DNA alphabet {A, C, G, T}, wherein 

9 is the Watson-Crick complementarity function, then a word that is #-pseudoknot-

unbordered will not form pseudoknot-like secondary structures such as the ones in 

Figure 7.3. We show that the notion of 0-pseudoknot-bordered word is a proper 

generalization of the notion of ^-bordered word proposed in [11], and thus a proper 

generalization of the notion of bordered word. We also provide several properties of 

0-pseudoknot-(un)bordered words. 

Let 9 be a d-morphic involution. A word u € S* is said to be a proper 9-border 
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of a word w G S + if u is a proper prefix of w and 9{u) is a proper suffix of w, i.e., 

w — ua — /39(u) for some a, f3 G S + . Ld(w) denotes the set of all proper ^-borders 

of a nonempty word w. Note that A G Ld(uO for all w G S + . A word w G S + is said 

to be 9-bordered if it has a proper 0-border other than A, i.e., |Ld(u;)| > 2; otherwise, 

it is 9-unbordered. Define now De{i) := {w G S + | |Ld(io)| = z}. Then De(l) is the 

set of all 0-unbordered words. 

We call a word u e E ' a 9-pseudoknot-border (or 0-pk-border) of a word w G S* 

if there exists a cyclic permutation v of u such that w = ua = /39(v) for some 

a, /? G S*. We also employ the expression "xy is a 9-pk-border of w" to mean 

"v is a 0-pk-border of w such that v = xy and w — xya = f39(yx) for some 

a, /5 G £*". Let L^d(u;) denote the set of all 0-pk-borders of a nonempty word w, and 

K<?(z) :— {w G S + | |L£j(w)| = i}. We call a nonempty word 9-pseudoknot-bordered 

(or 0-pk-bordered) if it has a nonempty 0-pk-border; otherwise, it is 9-pseudoknot-

unbordered. Note that A G L d̂(w;) for all w G S + . Note also that no word in Kg(l) 

has 0-pk-borders other than A, and hence K#(l) is the set of all #-pk-unbordered 

words. 

Example 22. Let 9 be an antimorphic involution on S* and w — aababbb. As men­

tioned in Section 7.2, a, b G S are chosen so as to satisfy 0(a) = 6 and 0(6) = a. 

Then Lj?d(w;) = {A, a, aa, aaba}. In particular, setting x = aab and y = a shows that 

w = xybbb = aab9(yx) and hence aaba G L^d(w). Note that w G K#(4). 

A word may have itself as its 0-pk-border, in both cases of 9 being morphic and 
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being antimorphic, as shown by the following examples. 

Example 23. Let 9 be a morphic involution on E* and w = abbaabba. Then w can 

be written as w = xy = 9(yx) by letting x = abbaab and y — ba. 

Example 24. Let 9 be an antimorphic involution on E* and w — ababbbaa. Then 

w = xy = 0(y:r) by letting x = a&afr and y = bbaa. 

Observe that the definitions of Ld{w) and L^.d(w) are different in that the former 

does not contain w while the latter can, if w is a 0-pk-border of itself. This scenario 

is different also from the classical case of bordered words, a particular case of 0-pk-

bordered words where 9, as well as the permutation involved, are the identity. In the 

classical case, Ld(w) denotes the set of proper borders of w, i.e., it does not contain 

w, since w is trivially always a border of itself. This definition was followed closely 

when defining Le
d{w), the set of proper ^-borders of a word w. However, in the 

case of 0-pseudoknot-bordered words we strayed from this model in denning L|?d(u;). 

This was because a word may, or may not, be a 0-pk-border of itself, and thus it is 

meaningful to observe for a word w, whether or not w belongs to L^.d(w). This choice 

implies that, while all other notions proposed here are strict generalizations of the 

corresponding notions related to ^-bordered and bordered words, L^d(w) does not 

strictly generalize Ld(tu) and Ld(w). Observe, however, that all the results obtained 

in this paper hold for the other definition choice for L d̂(zy) as well, either unchanged 

or augmented by a weak additional condition. 
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Since a word is a cyclic permutation of itself, if a word has a 0-border, then the 

0-border also becomes a 0-pk-border of the word. Hence, the following lemma and 

its corollary hold. 

Lemma 7.2. Let 9 be a d-morphic involution on S* and w E S + . Then he
A(w) C 

L^d(u;) holds. 

Corollary 7.3. Let 9 be a d-morphic involution on S*. Then Kg(l) C Dg(l). 

As shown in the following example, there exist a word w and a d-morphic invo­

lution 9 for which Ld(u;) is strictly included in L^.d(w). 

Example 25. Let 9 be a d-morphic involution on S* and w — aababbb. For both cases 

of 9 being morphic or antimorphic, Ld(u;) = {A, a, aa} but L^.d(w) = {A, a, aa, aaba}. 

In the preceding example, L*d(w) happens to be the same whether the involution 

defined as 9(a) = b and vice versa is extended to a morphism, or to an antimorphism 

of E*. This is not always the case, as indicated in the following two examples. 

Example 26. Let 9 be a d-morphic involution on S* and w = aabbabaababb. When 

9 is morphic, w = xyaababb = aabbab9(yx) for x = aa and y = bbab, and hence 

aabbab € Lj?d(iw). On the other hand, aabbab £ L^d(u;) if 9 is antimorphic. 

Example 27. Let 9 be a d-morphic involution on S* and w' = aabbabbbabaa. When 

9 is antimorphic, w = xybbabaa = aabbabQ(yx) for x = aa and y = bbab, and hence 

aabbab € L*d(w/). On the other hand, aabbab £ L^d(u/) for 9 being morphic. 
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There exist alphabets £, and d-morphic involutions 9 on £*, for which the 

inclusion relation of Corollary 7.3 is proper. Indeed, let us consider a morphic 

involution 9, and a word w e D^l) such that w £ Ke(l). This implies that 

w — xya — f39(y)9(x) for some x,y,a,/3 € £*. If x were a proper prefix of w, 

then w would be ^-bordered, and hence w = x = 9{x). Hence, if there exists c e S 

such that 9(c) = c, a word w G Dg(l) \ Kg(l) exists, and the inclusion relation is 

proper as seen by choosing w — c; otherwise Dg(l) = K<j(l). For an antimorphic 

involution 9, we have the following example. 

Example 28. Let 9 be an antimorphic involution on £* and w = aba. Then w € 

D^(l), but w & K<?(1) because u; = xya — a9(yx) for x = a and y = 6. 

For a given d-morphic involution 9 on £*, a few remarks are in order regarding 

the set of all 0-pseudoknot-bordered words over E, i.e., the complement of K0(l). 

For an antimorphic involution, which is of the most interest because of the biological 

motivation of this study, the cross-dependency existing in any 0-pk-bordered word 

indicates that the set of all #-pk-bordered words is not context-free. This can indeed 

be proved by using the Pumping Lemma for context-free languages by choosing, e.g., 

an alphabet E, an antimorphic involution 9 that maps a to b and vice versa, and 

the 0-pk-bordered word anbnan, where n is the constant given by the Pumping 

Lemma. The fact that several (mild-)context-sensitive grammars or their stochastic 

variants were proposed to model pseudoknot structures [18, 20, 24] suggests that, for 

an antimorphic involution 9, the set of all #-pk-bordered words over E is context-
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sensitive. This is indeed true, but we omit here the lengthy but straightforward 

construction of such a context-sensitive grammar, and the proof. 

We conclude this section with some basic properties of 0-pk-borders, which will 

be used mainly in the proofs of the next section. 

Lemma 7.4. Let 9 be a d-morphic involution on £*. The following hold: 

1. If a word w G S + has a 9-pk-border of length n, then, for every a G S, the 

number of occurrences of the letter a in the prefix of length n of w is equal to 

the number of occurrences of the letter 9(a) in the suffix of length n of w. 

2. For all a G £ such that a / 9(a), ak is 9-pk-unbordered for all k > 1. 

3. For words v,w G £ + and n>l,ifve he
cA(wn) and |tum-1| < \v\ < \wm\ for 

some m> 1, then v G Lj?d(u;fc) for all k with m < k < n. 

7.4 Primitive and #-pseudoknot-unbordered words 

One of the processes that are essential and often unavoidable in biocomputing al­

gorithms is the concatenation of information-encoding DNA single strands. Thus, a 

question that is often asked is: Given some DNA strands having a certain "good" en­

coding property, will the catenation of these strands preserve this property? In this 

section we make steps towards answering this question in the case of the property 

of a word being 0-pseudoknot-unbordered. That is, for an antimorphic involution 9, 
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we first address the following question: "Given a 0-pk-unbordered word u, is every 

word in {u}+ also 0-pk-unbordered?" This question was answered positively for 9-

unbordered words in [11]: A power of a 0-unbordered word is always 0-unbordered. 

We show that, in contrast, the question is answered negatively for 0-pk-unbordered 

words. Moreover, we provide a sufficient condition for a 0-pk-unbordered word to 

satisfy the condition that all of its powers are 0-pk-unbordered (Corollary 7.13). 

We begin by providing a necessary and sufficient condition for a word to be 9-

pk-unbordered, which follows directly from the definition of a 0-pk-bordered word. 

L e m m a 7.5. Let 9 be an antimorphic involution on E*. Then a word u G E + is 

9-pk-unbordered if and only «/0(Cp(Pref(u))) n Suff(u) = 0. 

For a d-morphic involution S on E ' , a word w G E* is called 9-palindrome if 

w = 9{w). Let P$ denote the set of all ^-palindromes over E. 

L e m m a 7.6. Let 9 be an antimorphic involution on E*, and x,y be 9-palindromes 

such that xy ^ X. If a word u G E + has xy as both its prefix and suffix, then u is 

9-pk-bordered. 

Proof. Let u — xya = /3xy for some a, /3 £ E*. The fact that x, y € P<? implies that 

u = f39{x)9(y) = (39(yx), Therefore, u is 0-pk-bordered. • 

Recall the following result from [11]. 

L e m m a 7.7. Let 9 be an antimorphism on E* and let u G E + . Then u G D#(l) if 

and only if u+ C D#(l). 
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L^PJ 

Figure 7.4: A pictorial representation of Case 2 of the proof of Proposition 7.8. 

In contrast, the following example shows that there exist 0-pk-unbordered words 

u such that at uk is 0-pk-bordered for some k > 2. 

Example 29. Let 9 be an antimorphic involution on S* and u — aabbbbaba. Al­

though u is 0-pk-unbordered, u2 is 0-pk-bordered. In fact, u2 = xyabbbbaba = 

aabbbbab9(x)0(y) for x = aa666 and y = babaa. 

In the following, we give a characterization of 0-pk-unbordered words u with 

the property that uk is 0-pk-bordered for some k > 2, that takes into account the 

relative length of the 0-pk-borders of u2. 

Proposition 7.8. Let 9 be an antimorphic involution on E*. Then for a 9-pk-

unbordered word u, if there exists k > 2 such that uk has a nonempty 9-pk-border w, 

then \u\ < \w\ < ||w| holds. 

Proof. Suppose for some k > 2, there were a w e Lj?d(u
fc) such that either |iu| < |u| 

or ||w| < |w| hold. If \w\ < \u\, then this w leads us to a contradiction immediately. 
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Next we consider the case | |u | < \w\ < 2\u\. Then w G L^d(u
fc) implies w G 

L^d(u
2). In other words, there exists a decomposition w = xy such that uu = 

xya = /39(x)9(y) for some a,(3 £ S + . Since |u;| > | |u| , we have xy = uup and 

9(x)9(y) = MSU, where «p G Pref(u), and ws G Suff('u). Now we have the following 

two cases: 

1. \x\ > \u\ or \y\ > \u\ holds, 

2. |x| < |w| and \y\ < \u\ hold. 

In the first case, for reasons of symmetry, we only have to consider the case 

|x| > |tt|_ Since 6(x)9(y) = usu, we can write 9{x) = usu'p for some u'p G Pref(u). Let 

u — u'pu's, and we can easily check that u's G Suff(us). Therefore, u'su'p G Suff(^(x)), 

which equals 9(u'p)9(u's) G Pref(a;). This means that 9(u'p)9(u's) = u because u 

and 9(u'p)9(u's) are prefixes of x and they have equal lengths. Since u — u'pu's, we 

conclude that both u'p and u's are ^-palindromes. The application of Lemmata 7.5 

and 7.6 leads now to a contradiction. 

Next we consider the second case (see Figure 7.4). This figure shows xy = uup 

and 9(x)9(y) = usu. Since both x and y are shorter than u, these equations imply 

that u — xu's = u'p9(y), where u'p G Pref(u) and u's G Suff(u). Comparing this 

equation with xy = uup we derive y = u'sup, and hence u = u'p9(up)6(u's). This 

result, together with u = xu's, implies that u's is a ^-palindrome and x — u'p9(up). 

Substituting this x and u = u'p9(y) into 9(x)9(y) = usu gives up9(u'p)9(y) = usu'p9(y), 
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which means that up = us and u'p is a ^-palindrome. 

Let us bring now into the picture the original condition | |u | < \w\ < 2\u\. Since 

\w\ — \u\ + \up\, | |u | < |u;| means | |u | < \up\. Hence, \xy\ = \uup\ < 4\up\. This 

implies that either \x\ < 2\up\ or \y\ < 2\up\ holds. We assume the former case 

holds. Then 9(x) = usu'p implies \u'p\ < \us\ because \9(x)\ = |x| < 2|up| = 2\us\. 

Let us — U1U2 such that |iti| = |Mp|. Note that us G Pref(x) because up,x G Pref(n), 

\us\ < \x\, and up = us. Comparing us = U\U2 with x = 9{uiU2u'p) based on 

us G Pref(a;) results in u2 = 9(u2) and u\ = 9(u'p), which in turn implies u\ — 9{ui) 

because u'p = 9{u'p). Now Lemmata 7.5 and 7.6 lead to a contradiction because u 

contains the concatenation of two 0-palindromes u\ and 112 as its prefix up and suffix 

What remains to consider is the case where \w\ > 2\u\. Let w — xy = unup and 

9{x)9{y) = usu
n for some n > 2, up G PPref(u), and us G PSuff(w). Then either 

\x\ > \u\ or \y\ > \u\ holds. Let us assume that \x\ > \u\ holds. Then 9{x) = usu
mup 

and 9(y) = u'su
n~m~1 for some m < n, where u'pu's = u. If u's G Suff(us), then 

u'su
mu'p G Su$(9(x)), which implies 9(u'p)9(u)m9(u's) G Pref(x). Since x is not 

shorter than u, u = 9(u'p)9(u's). Thus, u can be factorized into two ^-palindromes, 

a contradiction. If us G PSuff(u'J, then m must be at least 1; otherwise, \9(x)\ = 

\usu'p\ < \u'su'p\ = \u\. Therefore, u'su'p G Suff(6l(x)), i.e., 9(u'p)9(u's) G Pref(x). Now 

we have u — 9(u')9(u's), and this leads to the same contradiction as above. • 
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Note that, in Example 29, the #-pk-border xy of u2 satisfies \u\ < \xy\ < ||tt|. 

Corollary 7.9. Let 9 be an antimorphic involution on E*. For a word u € Kg(l), 

u+ g Ke{\) if and only if u2 £ K*(l). 

The next lemma is a consequence of the proof of Proposition 7.8, and will be 

a useful tool in obtaining several additional properties of 0-pk-unbordered words 

whose square is 0-pk-bordered. 

Lemma 7.10. Let 9 be an antimorphic involution on S*, andu be a 9-pk-unbordered 

word. If xy £ L6
cA(u2) such that xy = uup for some up G Pref(u); then 2\up\ < \x\ < 

\u\ and 2\up\ < \y\ < \u\ hold. 

In what follows, we give a characterization of 0-pk-unbordered words whose 

square is 0-pk-bordered. 

Lemma 7.11. Let 9 be an antimorphic involution on T,*, andu be a 9-pk-unbordered 

word. Then u2 is 9-pk-bordered if and only if u = upa9(up)/3up for some upi a, /? € 

E+ such that upa, (3up are 9-palindromes. 

Proof. (Only if) Let u2 = xy^i = j29(x)9(y) for xy such that \u\ < \xy\ < ||it|. 

Then xy = uup and 9(x)9(y) = usu for some up € Pref(w) and us e Suff(u), 

which satisfy \up\ = \us\ < \\u\. In addition, Lemma 7.10 enables us to assume that 

2|up| < \x\ < \u\ and 2|up| < \y\ < \u\. Now we have 9(x) — usupa and y = f3usup for 

some a,(3 E S + . Then x = 9(upa)9(us) and 9{y) = 9(up)9(/3us). Substituting these 
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into xy = uup and 9(x)9(y) = usu gives that u — 9(upa)9(us)Pus — upa9(up)9(pus). 

This means that both upa and flus are ^-palindromes and 9(up) — 9{us). Thus, 

up — us and then u — upa9(up)/3up. (If) Let x = upa9(up) and y — f3upup. 

Then 9{x)9{y) — up9(upa)9(up)9(Pup). We can rewrite the right-hand side as 

upupa9(up)Pup because upa,fiup G Pg. This means 9(x)9(y) = upu G SuS(uu). • 

Lemma 7.12. Let 9 be an antimorphic involution on £*, andu be a 9-pk-unbordered 

word. If u2 is 9-pk-bordered, then u is primitive. 

Proof. Since u2 has a 0-pk-border uup for some up G Pref(u), Lemma 7.11 implies 

that u can be written as upa9(up)/3up for some a, /3 € S* such that upa, /3up G P$. 

Suppose u were not primitive, i.e., u = wr for some w G E + and r > 2. To begin 

with, we consider the case \up\ < \w\. This case has the two subcases depending 

on whether there exists an integer n such that \upa\ < \wn\ < \upa9(up)\, where 

1 < n < r — 1, or not. If such n exists, the infix 9{up) overlaps with the n-th 

occurrence of w and with the (n + l)-th occurrence of w, counted from the left. Let 

9(up) = 9{u2)9(ux) such that 9(u2) G Suff(u;) and 9{u\) G Pref(w). Then we have 

up = U\U2- Both up and w are prefixes of u and \up\ < \w\ so that U\ G Pref(tw), 

and hence u\ = 9{ui). In the same way, u^ = 9{u,2)- Then Lemma 7.6 leads to a 

contradiction with the fact that u G K#(l). 

Next we consider the other subcase. We can rewrite this subcase as follows: 

There exists an integer n such that |io"| < \upa\ and \upa9(up)\ < lio""14!, where 
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0 < n < r— 1. Depending on the value of n, there exist 3 possibilities to be taken 

into account: (a) n = 0, (b) n = r — l, and (c) otherwise. In case (a), we can write 

w — upa9(up)f3p, ^ = wr~2, and w = flsup for some /3P, /%, f3s G E* such that (3pf3if3s — 

(3. Then f3up = /3pw
r"1. Replacing one occurrence of w in the right-hand of this 

equation with upa9(up)Pp gives /3up = /3pupa9(up) f3pw
r~2 — /3pw

r~2Upa9(up)/3p. This 

means that both /3P and upa9(up) are 0-palindromes because /3up G P#. Therefore, 

w is the concatenation of two 0-palindromes. Since u has w as its prefix and suffix, 

Lemma 7.6 leads to a contradiction. Case (b) is similar. In case (c), let w = upap, 

w"^1 = a4, w = as9(up)/3p, wr^l~2 - ft, and w = /3sup for ap, a%,as,{3p, /3„/5s G E* 

such that apa%as = a and fipfiifis = /5. Then one has upa = u;™o;s. Substituting 

to = as9(up)(3p into one occurrence of w in the right-hand side of this equation gives 

UpOt = as9(up)PpWn~las = wn~1as9(up)l3pOis. Since upa G P<?, both as and 9(up)j3p 

are 0-palindromes. Then Lemma 7.6 leads to a contradiction as above. 

Finally, we consider the case where w is shorter than up. Then there exist 

two integers n and h satisfying |u;n| < |upa| < ju;7^1) and |u;n+1+ft| < \upa9(up)\ < 

\wrH~uhH\, where h > 0. Hence, we can write as9{up)l3p = w1^2 for some as G Suff(o;) 

and f3p G Pref(/5) such that |as|, |/?p| < \w\. Thus, w = 7/3p for some 7 G Suff(0(up)), 

and hence as9(up)(3p — (j/3p)
hjf3pj(3p. This equation means (3pj G Suff(0(up)) 

because \w\ < \9(up)\. Therefore, 0(^7) = 0(i)0{Pp) G Pref(up) C Pref(u). In 

addition, w = 7/3p G Suff(w). Thus, u = 9(ry)9(/3p)v/yPp for some u G E*, which 

conflicts with « £ Kj(l). • 
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Corollary 7.13. Let 9 be an antimorphic involution on E*. If u is a non-primitive 

9-pk-unbordered word, then u2 is 9-pk-unbordered. This further implies that any 

power of u is 9-pk-unbordered. 

Example 30. Let 9 be an antimorphic involution on E* and u — abaaabaa, which is 

clearly not primitive. It is easy to see that neither u nor u2 is 0-pk-bordered. Hence, 

uk is 0-pk-unbordered for any k > 1. 

For a 0-pk-unbordered word u whose square is 0-pk-bordered, we now investigate 

the primitivity of 0-pk-borders of u2. 

Theorem 7.14. Let 9 be an antimorphic involution on E*, andu be a 9-pk-unbordered 

word whose square is 9-pk-bordered. Then any 9-pk-border of u2 is primitive. 

Proof. Let uup be a 0-pk-border of u2. Lemma 7.11 says u — upa9(up)f3up for 

up, a, (3 € E + such that upa, /3up £ P#. Suppose uup is not primitive, that is, 

uup = wr for w G E + and r > 2. 

To begin with, we assume \w\ = \up\. Then we have u = wr~l. The condition 

\up\ < | | u | , which is necessary for u+ % A"<?(1), implies r > 4. Thus, u would be not 

primitive, a contradiction. 

Next we assume \w\ > \up\. As in the proof of Lemma 7.12, we have to consider 

the following two cases: 

1. There exists an integer n such that \upa\ < \wn\ < \upa9(up)\, where 1 < n < 

r-1, 
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2. There exists an integer n such that \wn\ < \upa\ and \upa6(up)\ < Iw7^1], 

where 0 < n < r — 1. 

In case 1, let 9(up) — 9(ii2)9(ui) such that 9{u2) G Suff(u;) and 9{u{) G Pref(w). 

Note that w has up as both its prefix and suffix because wr (— uup) has up both 

as its prefix and as its suffix, and \up\ < \w\. Hence, we have #(1*2) G Suff(up) and 

9{ui) G Pref(^p). Since up = 1*1̂ 2, we also have ux G Pref(wp) and u2 G Suff(up), 

which means that both u\ and u2 are ^-palindromes. Then Lemma 7.6 leads to 

a contradiction to the fact that u G Kg(l) because u has the product of two 9-

palindromes uiu2 both as its prefix and as its suffix. 

In case 2, there are three possibilities depending on the value of n: (a) n = 0, 

(b) n = r — 1, and (c) otherwise. 

In subcase 2(a), we can write w — upa9(up)f3p, wr~3 = (3t, fisup = wwp, and 

w = WpUp for some wp G Pref (w) and (3P, /3z,f3s G S* such that /? = /3pPtps- Now we 

can rewrite 9{up)f3upup = 9(up)PPPl/3supUp = 9(up)/3p/3lw
2 — 9(up)l3pPlwupa9(up)Pp. 

Then we can say that 9(up)(3p is a ^-palindrome because 9(up)PupUp G P<?. Therefore, 

w = upa9(up)/3p = upa9(Pp)up. Compared to w = wpup, we have wv = upa9(PP). 
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w = upa9(up)/3p G Pref(«) => (3pUpa9(up) € Cp(Pref(u)), 

<3> PpO{a)0(up)9{up) G Cp(Pref(u)), 

O- upupa9(/3p) G 0(Cp(Pref («))), 

«• UpWp G 0(Cp(Pref(u))). 

The third implication is due to the fact that upa G P#. Since w2 = WpUpwpup is the 

suffix of UUp, UpWp € Suff(u), and hence 0(Cp(Pref(w))) fl Suff(u) ^ 0, which is a 

contradiction. 

In subcase 2(b), we can write w = upap, wr~2 = a%, wp = as9(up)Pup, and 

WpUp = w for some wp e Pref(iw) and ap,a%,as G S* such that a = apa%as. As 

in the cases above, since upa — 9(upa), as is also a ^-palindrome. Starting from 

w G Pref(it), now we can show upwp G 0(Cp(Pref(u))) n Suff(u). 

In subcase 2(c), let w = upai, wn~l = a2, w = a^9{up)l3i, K;r_J™~3 = /32, Psup = 

wwp, and w = wpup for some wp G Pref(u>) and ap, au as,/3p, (3Z, (3S G E* such 

that a = apatas and j3 = PpPtPs. Using these notations, we have upa = wnas = 

wnr~1as9(up)Ppas = as9(up)PPwn~~1as. Since upa G P$, we can observe that both as 

and 9(up)Pp are also ^-palindromes. Thus, w = as9(up)/3P = as9(Pp)up. Compared 

to w = WpUp, we can say wp = as9(/3p). Now we can obtain a contradiction to 
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u G Kg(l) as above. This completes the discussion of the case \w\ > \up\ with its 

two possibilities (1) and (2). 

Finally, we consider the case where \w\ < \up\. This means that there exist 

two integers n and h satisfying \wn\ < \upa\ < {w1^1] and lu;"414'1! < \upa9(up)\ < 

Î TH-HM-Î  where h > 0. Hence, we have as9(up)/3p = w1^2 for some as G Suff(a) and 

f3p G Pref(/5) such that |as|, |/3P| < \w\. Therefore, w = j{3p for some 7 G Suff(0(up)), 

and hence as9(up)Pp — (~fPp)
hjPpjf3p- This implies /?P7 G Suff(0(up)) because 

\w\ < \9(up)\. This means 9(-y)9(f3l) G Pref(up). Moreover w = 7/3p G Suff(up) 

because the rightmost occurrence of KP in uup = wr has u; as its suffix. Thus, 

u = 9(J)9(/3I)VJ/3I for some v G S* because it has up both as its prefix and as its 

suffix. This conclusion contradicts u G K#(l). • 

We conclude this section by showing that, for a word u G Ke(l), if xy,x'y' G 

L^d(u
2) with |xy| = \x'y'\, then a; = x' and y = y'. 

Lemma 7.15. Let 9 be an antimorphic involution on S*, and w G S + . A 0-pfc-

border v of w is not primitive if and only if there exist words x, y, x', y' satisfying 

v — xy — x'y', yx = y'x', and x ^ x'. 

Proof. (Only if) Under the assumption, v = xy = zn for some primitive word 

z G S + and n > 2. Then x = z%zp and y = zsz
n~%~1 for some i > 0, zp, zs G S* 

such that z — zpzs. Let x' = z3zp and y' = zsz
n~3~1 for some j 7̂  i. Since n > 2, 

such j exists. Clearly xy = x'y' and we can easily check y'x' = yx. (If) We can 
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represent w as both w = xya = (39(yx) and w = x'y'a = f39(y'x'). Without loss of 

generality, we can assume \x'\ < \x\, and then this implies that 9(x) = 9{x')q and 

@{y') = qQ(y) for some ? G S + . Therefore, x = 9(q)x' and y' = y9(q). Substituting 

these into xy = x'y', we obtain xy = 9(q)x'y = x'y9(q). Then Theorem 7.1 implies 

that v is not primitive. • 

The next proposition now follows from Theorem 7.14 and Lemma 7.15. 

Proposition 7.16. Let 9 be an antimorphic involution on S* and u be a 9-pk-

unbordered word. If w is a nonempty 9-pk-border of u2, then the factorization of w 

into x and y such that u2 = xya = f39(yx) for some a, (3 G S* is unique. 

7.5 Discussion 

In this paper, we proposed the notion of a 0-pseudoknot-unbordered word, where 9 

is a morphic or antimorphic involution. This concept models DNA (or RNA) single 

strands that do not form some pseudoknot-like secondary structures. This formu­

lation is general enough to handle intermolecular structures similar to pseudoknots. 

In addition, this notion is a proper generalization of the notion of ^-unbordered 

word, and thus of the classical notion of unbordered word. After obtaining some 

basic properties of ^-bordered and ^-unbordered words, we investigated the ques­

tion of whether or not all powers of a 0-unbordered words remain ^-unbordered. 

The question was answered in the negative by providing counterexamples. We also 
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showed that, for a 0-unbordered word u, the fact that u is not primitive is a sufficient 

condition for uk to be 0-pseudoknot-unbordered for all k > 1. This is the first step 

towards obtaining a condition that a language L of 0-pseudoknot-unbordered words 

would have to satisfy in order for L+ to have the same property. Another direction 

of research is to consider more realistic pseudoknot structures, i.e., to remove the 

restriction v\ = v2 — t>4 = 5̂ = A in the general definition of the pseudoknot as 

a word of the form Vixv2yv^6{x)vi6{y)v5. In particular, the conditions i>2 = A and 

v4 = A should be weakened, because pseudoknots occurring in real RNAs rarely 

satisfy these conditions due to steric effects. 
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Chapter 8 

Duplication on DNA sequences 

This chapter presents results on a model of DNA duplication process, investigated 

by the author, Masami Ito, Lila Kari, and Zachary Kincaid. These results were 

summarized into the following paper1: 

Masami Ito, Lila Kari, Zachary Kincaid, and Shinnosuke Seki. 

Duplication in DNA Sequences. 

In A. Condon, D. Harel, J. N. Kok, A. Salomaa, and E. Winfree, editors, Algorithmic 

Bioprocesses, Natural Computing Series, pages 43-61, Springer, 2009. 

Its conference version was presented at the 12th International Conference on 

Developments in Language Theory (DLT 2008): 

Masami Ito, Lila Kari, Zachary Kincaid, and Shinnosuke Seki. 

Duplication in DNA Sequences. 

1A version of this chapter has been published. 
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In M. Ito and M. Toyama, editors, DLT 2008, volume 5257 of Lecture Notes in 

Computer Science, pages 419-430, Springer, 2008. 

The contents of this chapter are well-organized and more-deeply discussed in the 

undergraduate thesis of Zachary Kincaid with other interesting topics: 

Zachary Kincaid. 

Duplication and Decomposition of Formal Languages. 

Undergraduate thesis, the University of Western Ontario, 2008. 

Summary: The duplication and repeat-deletion operations are the basis of a formal 

language theoretic model of errors that can occur during DNA replication. During 

DNA replication, subsequences of a strand of DNA may be copied several times 

(resulting in duplications) or skipped (resulting in repeat-deletions). As formal 

language operations, iterated duplication and repeat-deletion of words and languages 

have been well-studied in the literature. However, little is known about single-step 

duplications and repeat-deletions. In this paper, we investigate several properties of 

these operations, including closure properties of language families in the Chomsky 

hierarchy and equations involving these operations. We also make progress towards 

a characterization of regular languages that are generated by duplicating a regular 

language. 
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Duplication in DNA sequences 

Masami Ito1, Lila Kari2, Zachary Kincaid3, and Shinnosuke Seki2 

1 Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Kyoto, Japan, 603-8555. 
2 Department of Computer Science, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. 

3 Department of Computer Science, University of Toronto, Toronto, Ontario, M5S 2E4, Canada. 

8.1 Introduction 

Duplication grammars and duplication languages have recently received a great deal 

of attention in the formal language theory community. Duplication grammars, de­

fined in [16], model duplication using string rewriting systems. Several properties of 

languages generated by duplication grammars were investigated in [16, 17]. Another 

prevalent model for duplication is a unary operation on words [2, 3, 8, 10, 12, 13]. 

The research on duplication is motivated by errors that occur during DNA2 repli­

cation. Duplication and repeat-deletion (also called repeat expansion and repeat 

contraction, i.e., insertions and deletions of tandem repeating sequence) are biologi­

cally significant because they are among the most common errors that occur during 

DNA replication. In general insertions and deletions have been linked to cancer and 

more than 15 hereditary diseases [1]. They can also have positive consequences such 

as a contribution to the genetic functional compensation [5]. Interestingly, the mech­

anisms that cause insertions and deletions are not all well understood by geneticists 

2 A DNA single strand is a string over the DNA alphabet of bases {A, C, G, T}. Due to the Watson-
Crick complementarity property of bases, wherein A is complement to T and C is complement to G, 
two DNA single strands of opposite orientation and exact complementary sequences can bind to 
each other to form a double DNA strand. This process is called base-pairing. 
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[4]. For example, the strand slippages at tandem repeats and interspersed repeats 

are well understood but the repeat expansion and contraction in tri-nucleotide re­

peat diseases remain unexplained. 

Strand slippage is a prevalent explanation for the occurence of repeat expansions 

and repeat contractions during DNA replication. DNA replication is the process by 

which the DNA polymerase enzyme creates a new "nascent DNA strand" that is the 

complement of a given single strand of DNA referred to as the "template strand". 

The replication process begins by mixing together the template DNA strand, the 

DNA polymerase enzyme, a special short DNA single strand called a "primer", 

and sufficient individual bases that will be used as building blocks. The primer is 

specially designed to base-pair with the template and thus make it double-stranded 

for the length of the primer. The DNA polymerase will use the primer-template 

double-strand subsequence as a toe-hold, and will start adding complementary bases 

to the template strand, one by one, in one direction only, until the entire template 

strand becomes double-stranded. It has been observed that errors can happen during 

this process, the most common of them being insertions and deletions of bases. 

The current explanation is that these repeat expansions and repeat contractions are 

caused by misalignments between the template and nascent strand during replication 

[4]. DNA polymerase is not known to have any "memory" to remember which base 

on the template has been just copied onto the nascent strand, and hence the template 

and nascent strands can slip. As such, the DNA polymerase may copy a part of the 
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template twice (resulting in an insertion) or forget to copy it (deletion). Repeat 

expansions and contractions occur most frequently on repeated sequences, so they 

are appropriately modelled by the rewriting rules u -¥ uu and uu -> u, respectively. 

The rule u —> uu is a natural model for duplication, and the rule uu —>• u 

models the dual of duplication, which we call repeat-deletion. Since strand slippage 

is responsible for both these operations, it is natural to study both duplication 

and repeat-deletion. Repeat-deletion has already been extensively studied, e.g., in 

[11]. However, the existing literature addresses mainly the iterated application of 

both repeat-deletion and duplication. This paper investigates the effects of a single 

duplication or repeat-deletion. This restriction introduces subtle new complexities 

into languages that can be obtained as a duplication or repeat-deletion of a language. 

This paper is organized as follows: in Section 8.2, we define terminology and 

notations to be used throughout the paper. Section 8.3 is dedicated to the closure 

properties of the language families of the Chomsky hierarchy under duplication 

and repeat-deletion. In Section 8.4, we present and solve language equations based 

on these operations, and give constructive solutions of the equation in the case 

involving duplication operation and regular languages. In Section 8.5, we introduce a 

generalization of duplication, namely controlled duplication. Section 8.6 investigates 

a characterization of the regular languages that can be obtained as a duplication of 

a regular language. When complete, such a characterization would constructively 

solve the language equation involving repeat-deletion and regular languages, for a 
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certain class of languages. Lastly, in Section 8.7 we present some results on the 

relationship between duplication, repeat-deletion, and primitive words. 

The conference version of this paper was published in [9]. 

8.2 Preliminaries 

We now provide definitions for terms and notations to be used throughout the paper. 

For basic concepts in formal language theory, we refer the reader to [6, 7, 20, 22]. 

For a relation R, we denote by R* the reflexive, transitive closure of R. E denotes a 

finite alphabet, E* denotes the set of words over E, and E+ denotes the set of words 

over E excluding the empty word A. For a non-negative integer n > 0, E™ denotes 

the set of words of length n over E, and let E-n — U"=0 £*• The length of a word 

w G E* is denoted by |iu|. A language over E is a subset of E*. For a language 

I C E ' , the set of all (internal) factors (resp. prefixes, suffixes) of L, are denoted by 

Inf(L) (resp. Pref(L), Suff(L)). The complement of a language L C E*, denoted by 

Lc, is defined as Lc = E* \ L. We denote by FIN the family of all finite languages, 

by REG the family of all regular languages, by CFL the family of all context-free 

languages, and by CSL the family of all context-sensitive languages. We note that 

FIN C REG C CFL C CSL. 

For a finite automaton A = (Q, E, S, s, F) (where Q is a state set, E is an 

alphabet, 5 : Q x E —> 2Q is a transition function, s € Q is the start state, and 
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F C Q is a set of final states), let C{A) denote the language accepted by A. We 

extend 5 to 5 : Q x S* ->• 2Q as follows: (1) %,A) = {5} for q e Q and (2) 

<%, iwa) = u
Pei(g)lu)^(p5

 a) for <j e Q, w G £*, and a e S. For Pi,P2 C Q, we define 

an automaton -A^p^ = (Q U s0, E, 5', s0, P2), where so ^ Q is a new start state and 

6' = 5u{s0,X,P1). Thus, 

£(A(PuP2)) = iw I HPI,W) n P2 / 0 for some pi 6 P J 

If P% is the singleton set {p,}, then we may simply write pz for i e {1,2}. 

In this paper, we investigate two operations that are defined on words and ex­

tended to languages: duplication and repeat-deletion. We employ the duplication 

operation <\? described in [2], which is defined as follows: 

v? — {v I u = xyz, v — xyyz for some x,y E £*, y € S + } . 

In the canonical way, the duplication operation is extended to a language LCE*: 

L* = (J „". 

We also define another unary operation based on the dual of the <? operation. We 

term this operation repeat-deletion and denote it by <(k. Note that while biologists 

refer to this process simply as deletion, in formal language theory, the term deletion 
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typically refers to removing arbitrary (rather than repeated) factors of word. 

Definition 2. For a word j ) 6 E ' , the language generated by repeat-deletion of v is 

defined 

v* = {u | v = xyyz, u = xyz for some x, z G £*, y G S + } . 

Again, the repeat-deletion operation is extended to languages: for a given lan­

guage L C £*, 

L* = (J v* 

We avoid inverse notation because "s? and 4k are not inverses when considered as 

operations on languages. That is, for a language L C £*, L C (L^)* but it is not 

always the case that L = (LP)*. 

Example 31. Let L = a*66. Then abb e L => aabb G LP. Therefore aab e (LP)*, 

but aafe ^ L. 

Previous work focussed on the reflexive transitive closure of the duplication oper­

ation, which we will refer to as duplication closure. All occurrences of 9?, duplication, 

4b, and repeat-deletion refer to the single step variations of the operations. 

8.3 Closure Properties 

Much of the work on duplication has been concerned with determining which of 

the families of languages on the Chomsky hierarchy are closed under duplication 
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closure. It is known that, on a binary alphabet, the family of regular languages 

is closed under duplication closure. In contrast, on a larger alphabet, REG is still 

closed under n-bounded duplication closure for n < 2, but REG is not closed under 

n-bounded operation closure for any n > 4. The family of context-free languages 

is closed under (uniformly) bounded duplication closure. The readers are refered to 

[8] for these results. 

It is a natural first step to determine these closure properties under (single step) 

duplication. In this section, we show that the family of regular languages is closed 

under repeat-deletion but not duplication, the family of context-free languages is 

not closed under either operation, and the family of context-sensitive languages is 

closed under both operations. 

The following two propositions are due to [21] (without proofs): 

Proposit ion 8.1. The family of regular languages is not closed under duplication. 

Proof. Let L = ab* and suppose that LP is regular. Since the family of regular 

languages is closed under intersection, L' = LP C\ab*ab* is regular. But L' is exactly 

the language {atfabi : i < j}, which is clearly not regular. So by contradiction, LP is 

not regular, and the family of regular languages is not closed under duplication. • 

Note that the proof of the preceding proposition requires that the alphabet con­

tain at least two letters. As we shall see in Section 8.6, this bound is tight: the 

family of regular languages over a unary alphabet is closed under duplication. 
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Proposition 8.2. The family of context-free languages is not closed under duplica­

tion. 

Proof. Let L = {albl | i > 1}, a context-free language. Suppose LP is context-free. 

Since the family of context-free languages is closed under intersection with regular 

languages, D = LP n {a*b*a*b*} is context free. 

Let p be the pumping-lemma constant of the language D. Consider the word 

z = apbpapbp € D. We can decompose z as z = uvwxy such that vx is a pumped 

part. Let zt — uvlwxly. Firstly, v must not contain both a and b; otherwise pumping 

v results in a word with more than two repetitions of tfb3 for some i, j > 1. This 

also applies to x. Secondly, vx must be within the central bpap part; otherwise, the 

pumped vx causes a difference between the number of first as and the number of 

last 6s. Now we know that vwx is within the central WaP part of z, and v = b% and 

x — a? for some 0 < i,j < p (with i,j not both zero). Then z2 = apbp+%ap+:>bv, 

which can not be generated by duplication of a word in L. Thus we conclude that 

LP is not context-free. • 

Proposition 8.3. The family of context-sensitive languages is closed under dupli­

cation. 

Proof. Let L be a context-sensitive language, and AL be a linear bounded automaton 

for L. Now we construct a Turing machine Ay for LP and show that Ay is a linear 

bounded automaton. Indeed, for a given input w G H*, Ay nondeterministically 
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choose w' G Inf (w) (let w = xw'z for some x, z € E*) and checks whether w' = yy 

for some y E E*. If not, it turns down this choice. Otherwise, it deletes one of y so 

that the input tape has xyz. Now Ay simulates AL on this tape, and if AL accepts 

the given input, xyz, then Ay accepts w = xyyz. Therefore, Ay accepts w if and 

only if there exists a nondeterministic choice of the infix with respect to which the 

simulated AL accepts the given input. Thus, C(A<?) = L?. 

This construction has four steps; the choice of an infix of an input, check of 

whether the infix is repetitive, deletion, and the simulation of AL. The first three 

steps require the workspace linear-proportional to the length of an input. In the 

fourth step, AL receives an input which is shorter than the original input to A<y 

and AL is a linear bounded automaton. As a result, Ay is also a linear bounded 

automaton. • 

In the following, we consider the closure properties of the language families in 

the Chomsky hierarchy under repeat-deletion. Our first goal is to prove that the 

family of regular languages is closed under repeat-deletion. For this purpose, we 

define the following binary operation \\ on languages L, R C E*: 

L\\R = {xyz | xy e L,yz e R,y ^ A}. 

Proposition 8.4 (Due to Z. Esik). The family of regular languages is closed under 
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Proof. Let L\,L<i C £+ be regular languages. Let # be a new letter (not in S) 

and let h be homomorphism defined by h(a) = a for a E E* and / J (# ) = A. Let 

L[ = L\ <— {#} = {u#v | uu e Li} («— denotes the insertion operation) and L'2 = 

L2 <- {#}. Moreover, let IT = L[#Z* and let 1^ = T?#U2. Then LitjL2 = h(L^r\ 

L2). Since the family of regular languages is closed under insertion, concatenation, 

intersection, and homomorphism, L\\\L2 is regular. • 

Let L be a regular language. We can construct a finite automaton A = (Q, S, 6, s, F) 

such that C(A) — L. Recall that for any state q E Q, C{A^S^) = {w : sw \-*A q) 

and C(A^p)) = {w : 3f E F such that qw \-*A / } . Intuitively, C(A^s>q)) is the set 

of words accepted "up to q", and £(A(gF)) is the set of words accepted "after q" 

so that C(A(s^)C{A(qyF)) C L is the set of words in L that have a derivation that 

passes through state q. 

Lemma 8.5. Let L be a regular language and A = (Q, S, 5, s, F) be a finite automa­

ton accepting L. Then L* = \Jq€Q C{A(^q))\\£{A(q^F)). 

Proof. Let V = \JqeQ C{A^q))\\C(A{q>F)). First we prove that L* C L'. Let a E L*. 

Then there exists a decomposition a = xyz for some x,y, z E S* such that zyyz £ L 

and y ^ X. Since 4̂ accepts xyyz, there exists some q E Q such that sxyyz h* qyz 

and gyz h* / for some f £ F. By construction, xy E C(A(Stq)) and yz E C{A^F)). 

This implies that xyz E £(A(Stq-))§£(A(q>F)), from which we have L* C V. 

Conversely, if a E L', then there exists q E Q such that a E £(A(s^))\\£{A(qiF)). 



www.manaraa.com

284 

We can decompose a into xyz for some x,y,z G S* such that xy € C(A(Sjq)), 

yz e C(A(g>F)), and y ^ A. Since C(A(s^)C(A(q>F)) C L, we have that xyyz belongs 

to L. It follows that a — xyz e L* and Z/ C L*. We conclude that V — L*. O 

Proposition 8.6. The family of regular languages is closed under repeat-deletion. 

Proof. Since the family of regular languages is closed under finite union and the q 

operation, it is closed under repeat-deletion (due to Lemma 8.5). • 

Proposition 8.7. The family of context-free languages is closed under q with regular 

languages. 

Proof. Repeat the argument in the proof for Proposition 8.4. Since the family 

of context-free languages is closed under insertion, concatenation with regular lan­

guages, intersection with regular languages, and homomorphism, the family of context-

free languages is closed under \\ with regular languages. • 

Lemma 8.8. The family of context-free languages is not closed under tj. 

Proof. Let Lx = {al#bl% \ i > 0} and L2 = {#^$0? | j > 0}. Although Lx and L2 

are CFLs, Li\\L2 — {al#bl$cl \ i > 0}, which is not context-free. • 

Proposition 8.9. The family of context-free languages is not closed under repeat-

deletion. 

Proof. Let L = {a'ftWftVc3 \i,j > 0}, which is context-free. Then L*Da*#b*c* = 

{a'jfcb'c3 | i,j > 0, i < j}, which is not context free. Since the family of context-free 
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languages is closed under intersection with regular languages, and since L*na*#6*c* 

is not context-free, we may conclude that L* is not context free. Thus, the family 

of context-free languages is not closed under repeat-deletion. • 

However, there do exist context-free (and non-regular) languages whose image 

under repeat deletion remains context-free. An example is shown below. 

Example 32. Let L = {anbn \ n > 0}; this is a context-free language. Then 

L* = {anbm | 1 < m < n < 2m} U {anbm | 1 < n < m < 2n}. This 

L* is generated by the following context-free grammar, and hence in CFL. Let 

G = ({a, 6}, {S, X, y, Xf, F /} , P, S), where the set of production rules P is given by 

S -»• X | Y, 

X —> aXb | aaXfb, 

Y -»• aYb | aYfbb, 

Xf —> aXfb | aaXfb | A, 

Yf -)• ay/6 | ay766 | A, 

Proposit ion 8.10. The family of context-sensitive languages is closed under repeat-

deletion. 

Proof. Let L and AL be defined as we did in Proposition 8.3. As A^> in the propo­

sition, we construct a linear bounded automaton A^ for L* which simulates A^. In 

contrast to ^4^, A+ nondeterministically copies an infix of a given input w. Formally 
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FIN 
REG 
CFL 
CSL 

V 
Y 
N 
N 
Y 

* 
Y 
Y 
N 
Y 

\ 
Y 
Y 
N 
Y 

\ with regular 
N 
Y 
Y 
Y 

Table 8.1: Closure properties of several language classes under duplication, repeat-
deletion, and the \\ operation 

speaking, w is regarded as a catenation of x, y, z and y is duplicated so as to result 

in xyyz on the input tape. Then A^ runs AL on the tape. If AL accepts xyyz, 

then A+ accepts w — xyz. As shown in Proposition 8.3, A+ is a linear bounded 

automaton. • 

In summary, the following closure properties related to duplication, repeat-

deletion, and the \\ operation hold: 

8.4 Language Equations 

We now consider the language equation problem posed by the duplication operation: 

for a given language L C E ' , can we find a language I C E * such that X^ = L? 

In the following, we show that, if L is a regular language and there exists a solution 

to X^ = L, then we can compute a maximal solution. We note that the solution to 

the language equation is not unique in general. 

Example 33. {aaa, aaaa, aaaaa} = {aaa, aaaaa} = {a1 : 4 < i < 10} 
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In view of the fact that a language equation may have multiple solutions, we 

define an equivalence relation ~<? on languages as follows: 

i^y«i9- Y*. 

For the same reason, we define an equivalence relation ~^ as follows: 

Lemma 8.11. / / [X] G 2s*/ ~<? and t /S C [X] (E ̂  <b), then \JLeE Le[X}. 

Proof. Let [X] G 2E*/ ~<? and S C [X] (S # 0). Prove that LH = ULe~ ^ ^ [X]. 

Let K G H. Clearly, y C LE and so Y^ C L*?. Now let «; e L 5
9 Then 

3x,z G S*,y G T,+ ,v G Ls such that w = #2/2/2 and v = xyz. Then there exists 

Z G S such that u G Z. Since Y,Z eZ, v^ C Z^ = Y9. Then u; G v^ implies 

w G y"9. Thus, LJ* c F 9 . We conclude that Y^ = L-^ and LH G [X]. • 

Corollary 8.12. For an equivalence class [X] G 2E*/ ~<?, there exists a unique 

maximal element Xmax with respect to the set inclusion partial order defined as 

follows: 

•̂max = ^J L. 
L€[X) 

We provide a way to construct the maximum element of a given equivalence 

class. First, we prove a more general result. 
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Proposition 8.13. Let L C £*, and let f, g : E* —>• 2E* 6e any functions such 

that u G g(i;) ^ « 6 /(it) for all u,v G E*. / / a solution to the language equation 

[_}xeX f(x) = L exists, then the maximum solution (with respect to the set inclusion 

partial order) is given by Xmax = (\JyeL' 9(y)Y'• 

Proof. For two languages X,Y CT,* such that \Jx€X f(x) — L a n d UyeY f(v) = L, 

\JzexuY f(z) = L holds. Hence the assumption implies the existence of Xmax. 

(C) Suppose 3w G g(v) D Xmax for some v G Lc. This means that v G f{w). 

However, f(w) C \JxeXm*x f(
x) = >̂ a n d hence v G L, a contradiction. Q ) Suppose 

that 3w G X^ax n (UyeL- 5(y))c- If f{w) Q L, then w G Xmax (by the maximality 

of Xmax). Otherwise, 3v G f(w) D Lc. This implies that io G 5(1;) C \JyeLC g(y)-

In both cases, we have a contradiction. Therefore, we have X^aK = \Jy€Lc g{y), i-e., 

xm a x = (U2/eic5(y))c- • 

Lemma 8.14. Let it, v G E*. TTien it. G v^ if and only if v G it*. 

Proof. (=>) If u G i> ,̂ then there exist x, z G E* and ?/ G E+ such that i> = xyz and 

u = xt/yz. Then u* contains xyz = v. (4=) If w G u*, then there exist x', 2' G E* 

and y' G E+ such that v = x'y'z' and it = x'y'y'z'. Then x'y'y'z' = u G i* .̂ • 

Proposition 8.13 and Lemma 8.14 imply the following corollaries. 

Corollary 8.15. Let L C E*. If there exists a language I C E " such that X* = L, 

then the maximum element Xmax of [X]^+ is given by ((Lc) )c. 
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Corollary 8.16. Let LCE* . If there exists a language X C E* such that X^ = L, 

then the maximum element Xmax of [X]^v is given by ((Lc)*)c. 

Proposition 8.17. Let L,X be regular languages satisfying X^ = L. Then it is 

decidable whether X is the maximal solution for this language equation. 

Proof. Since L is regular and REG is closed under repeat-deletion and complement, 

the maximum solution of X^ = L given in Corollary 8.16, ((Lc)*)c, is regular. Since 

the equivalence problem for regular languages is decidable, it is decidable whether 

a given solution to the duplication language equation is maximal. • 

Due to the fact that REG is not closed under duplication, we cannot obtain 

a similar decidability result for the X* = L language equation. This motivates 

our investigation in the next two sections of necessary and sufficient conditions for 

the duplication of a regular language to be regular. Indeed, in the cases when the 

duplication language (Lc) is regular, the solution to language equations X* = L, 

L e REG, can be constructed as described in Corollary 8.15. 

8.5 Controlled Duplication 

In Section 8.4 we showed that for a given language L C E * , the maximal solution 

of the repeat-deletion language equation X* = L is given by {{Lc) )c. However, 

unlike the duplication language equation, we do not have an efficient algorithm to 
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compute this language due to the fact that the family of regular languages is not 

closed under duplication. This motivates "controlling" the duplication in such a 

manner that duplications can occur only for some specific words. 

Let L, C be languages over E. We define the duplication of L using the control 

set C as follows: 

L^ (c ) = {xyyz \xyz£L,ye C). 

Note that this generalization of the duplication operation can express two vari­

ants of duplication that appear in previous literature, namely uniform and length-

bounded duplication ([12, 13]). Indeed, using the notation in [13], we have 

D\n)(L) = L*<**> and D\0,_n}(L) = L*&"\ 

This section presents basic properties of controlled duplications, some of which 

will turn out to be useful in Section 8.6. For symmetry, we also investigate properties 

of controlled repeat-deletion. 

Lemma 8.18. Let L C E* be a language and Ci,C*2 C E* be control sets. If 

CiQC2, then L"«U C L"M. 

Lemma 8.19. Let L C E* be a language and C\,Ci C E* be control sets. Then 

L9(CiUC2) _ £? (Ci ) y £<?(C2)_ 
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Let L C E* be a language, C C E* be a control set, and w € C. Then w is 

said to be useful with respect to L if w e Inf(L); otherwise, it is called useless with 

respect to L. The control set C is said to contain an infinite number of useful words 

with respect to L if and only if |Inf(L) f)C\ =00. 

Lemma 8.20. Let L C E* be a language, C C E* be a control set, and C be the 

set of all useless words in C with respect to L. Then L?^ = L^c^c^. 

Proof. Lemma 8.19 implies L^c> = L ^ N O U L^c'\ Since L^) = 0, tfV) = 

Proposition 8.21. For a regular language L C E* and a regular control set C C E*, 

ii is decidable whether C contains an infinite number of useful words with respect to 

L. 

Proof. Since L and C are regular, Inf(L) and hence Inf(L) D C are also regular. 

Since finiteness of a regular language is decidable, it is decidable whether or not a 

regular control set C contains an infinite number of useful words with respect to a 

language L. • 

Note that if L C E*, C C E* is a control set, and C contains at most a finite 

number of useful words with respect to L, then C" = C fl Inf (L) is a finite language 

and satisfies L^c"> — L^^c'\ In particular, for any finite language L and any control 

set C, there exists a finite control set C C C satisfying L^c^ = L^c'\ 
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We now extend our previous results on the closure properties of language families 

so as to accommodate the controlled duplication. Since <v) = <s?z*, we trivially have 

the following: 

• The family of regular languages is not closed under controlled duplication. 

• The family of context-free languages is not closed under controlled duplication, 

repeat-deletion, or \\. 

We conclude this section with definions of repeat-deletion and the \\ operation 

using control sets, and by providing a few results of them. 

Let L , L i , L 2 , C C E*. Then 

L*(C) = {xyz\xyyze L,yeC}, 

Li\\cL2 = {xyz | xy € Lu yz e L2,y € C}. 

It is straightforward to prove that the family of regular languages is closed under 

\c for any regular language C. Let Li, L2 be regular languages and form L\ and L2 as 

defined in the proof of Proposition 8.4. We see that £ 1 ^ 2 = h(Z^nZ2~n£*#C#£*). 

Furthermore, by repeating the argument in the proof of Proposition 8.6, we have 

that the family of regular languages is closed under 4f*c for any regular control set 

C. 

It is simple to check that if each word in L contains a subword that is in C, Vc 
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and 4 c satisfy the requirements of Proposition 8.13, so that we have a procedure 

to find X such that X^c^ — L if such an X exists. 

Proposition 8.22. Let L C E* be a context-free language and let C C E+ be a 

finite control set. Then L*(c) is context-free. 

Proof. Let h be the homomorphism defined by h(a) = h(a) = a for a G E, a G E. 

Then L' = /i_1(L) is context-free. Consider L" = L'n(£*{uu | « € C}£*). Then L" 

is context-free. Now let 9 be the homomorphism defined by 9(a) = a and 9(a) — A 

for a G E. Then 0(L") = L*(c) and hence L*(c) is context-free. • 

8.6 Conditions for L^c) to be Regular 

For a regular language L and a control set C, we now investigate a necessary and 

sufficient condition for iP^ to be regular. As suggested in the following example, 

even for a "simple" language L and a control set C, L^^ can be non-regular. 

Example 34. Let E = {a,6} and L = {w G E* | \w\ = 0 (mod 3)} and C = E*. 

Then L^ c ) 0 REG. 

Given a regular language L, a sufficient condition for L^^ to be regular is a 

corollary of the following result in [3]. A family of languages is called a trio if 

it is closed under A-free homomorphism, inverse homomorphism, and intersection 

with regular languages. Note that both the families of regular languages and of 

context-free languages are trio. 
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Theorem 8.23 ([3]). Any trio is closed under duplication with a finite control set. 

Corollary 8.24. Let L C E* be a regular language and C C E * . If there exists a 

finite control set C C E* such that L^c) = L^c'\ then L^c*> is regular. 

Given a regular language L, we now investigate necessary conditions for L ^ c ' to 

be regular. Results in [19] stating that infinite repetitive languages cannot be even 

context-free indicate that the converse of Corollary 8.24 may also be true. Hence, 

in the remainder of this section we shall investigate the following claim: 

Claim 8.25. Let L C E* be a regular language and C C E* be a control set. If Lv(-C^ 

is regular then there exist a finite control set C C E* such that LP^ = LP^C'. 

As shown in the following example, this claim generally does not hold. 

Example 35. Let E = {a, b}, L = ba+b, and C = ba+Ua+b. We can duplicate a prefix 

ba% of a word bo?b G L (i < j) to obtain a word ba%ba?b € LF^C\ In the same way, the 

duplication of a suffix aeb of a word bakb (k > £) results in a word bakbalb G L^c\ 

Thus Lc?(c') = ba+ba+b. Note that L and L^c^ are regular. However there exists 

no finite control set C" satisfying L?^ — lP^c'\ This is because ba+ba+b can have 

arbitrary long repetitions of o's, and hence arbitrary long control factors are required 

to generate it. 

Nevertheless this claim holds for several interesting cases: the case where L is 

finite or C contains at most a finite number of useful words with respect to L, the 

case of a unary alphabet E = {o}, the case L — E*, and the case where the control 
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set is "marked", i.e. there exists a € £ such that C C a(E \ {a})*a. Moreover, it 

turned out that the proof technique we employ for this fourth case can be utilized 

to prove that the claim holds for the case where C is nonoverlapping and an infix 

code, which is more general than the fourth case. In the following, we prove the 

direct implication of the claim for these cases (the reverse one is clear from Corollary 

8.24). 

In the case where L is finite, L?^ is finite and hence regular. Since Inf(L) is 

finite, by letting C = Cn ln f (L ) , we have L ^ c ) = L^c'l Thus the claim holds for 

this case. Moreover, even for an infinite L, we can say that if C contains at most 

a finite number of useful words with respect to L, then the claim holds because C", 

defined in the same manner as above, is finite. Therefore in the following we assume 

that L is infinite and C contains an infinite number of useful words with respect to 

L. 

Next, we show that the claim holds in the case of a unary alphabet. We employ 

the following known result for this purpose. 

Proposit ion 8.26 ([6]). Let E = {a} be a unary alphabet, and L be a language over 

E. L is regular if and only if there exists a finite set M of pairs of integers such that 

T _ I I nkn+rn 
^ — Ufc>0,(n,m)€AA " 

Proposit ion 8.27. Let E be a unary alphabet, say E = {a}, L C E* be a regular 

language, and C C E* be an arbitrary language. Then LF^C"> is regular, and there 
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exists a finite context C" G FIN such that LP^ = L^(c"}. 

Proof. L being regular, there exists a finite set of pairs of integers M = {(p?,Qj) | 

pl,ql G N0 ,1 < i < n} for some n G N such that L = \Jx>o,(Pt,g,)&Af oPlX+9'• 

Let L% — Ux>oaP,x+9*' a n (^ c o n s ider a word ak G C, where k G N. For some 

x > 0, we can apply the duplication with respect to ak to ap'x+g* if and only if 

PiX + Qi > &• The application generates a
p'x+qt+h G LP^C\ Note that for Xi,x2 € N0, 

PJXI + ^ + A; = pjX2 + ^ + A; (mod p t). We define a function ip% : C >->• { 0 , 1 , . . . ,p2—1} 

such that for afc G C, tpz{ak) — q% + k (mod p j . Hence, we can partition C into p» 

disjoint sets depending on ^ . Formally speaking, C = Uo<m<P, Ci,m> where Cl!TO = 

{w G C | if)i(w) — m}. Now the necessary and sufficient condition mentioned above 

as to the applicability implies that for a3,ak G Cj)Tri, if j < k, then Lt "a '' D L% ̂ a . 

Let wt)m be the shortest word in Cl>m. Then L^{{Wl'm]) = L^{C'm) holds. Thus, by 

letting C" = {u;lim | 1 < i < n ,0 < m < p j , we have L 9 ( c ) = L^C'K Clearly C" is 

finite, and hence L^c"> is regular. • 

By letting C = E*, Proposition 8.27 implies that the family of regular languages 

is closed under duplication when E is unary. 

Next we show that the claim holds for the case when L = E* (Corollary 8.32). 

This requires the following known two lemmata. A word w G E + is said to be 

primitive if w — vn implies that n = 1, i.e., w = v. A word v G E + is called a 

conjugate of u; if v — xy and w = yx for some x, y G E*. 
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Lemma 8.28 ([14]). For a primitive word p, any conjugate of p is primitive. 

Lemma 8.29 ([15]). Let p and q be primitive words with p ^ q and let i,j > 2. 

Then plqJ is primitive. 

For a language C C E*, we define Dup(C) = {ww \ w € C}. 

Proposit ion 8.30. Let C C E*. Then E*Dup(C)E* is regular if and only if there 

exists a finite language C such that E*Dup(C")E* = E*Dup(C)E*. 

Proof. The proof of 'if'-part is obvious since E*Dup(C")E* is regular. Now consider 

the proof of 'only if'-part. Assume L — E*Dup(C)E* is regular and consider the 

regular language L n (E* \ LE + ) n (E* \ E + L) . All words in this language have a 

representation ww for some w € C. Hence there exists C C C such that Dup(C') = 

L n (E* \ LE+) n (E* \ E+L). Notice that for any w e C there exist w' € C" and 

x,y e S* such that ww = xw'w'y. Therefore, E*Dup(C)E* = E*Dup(C")S*. 

Suppose C is infinite. Then there exists a word uu € Dup(C) with length twice 

that of the pumping lemma constant for Dup(C'). So by the pumping lemma, there 

exists a decomposition uu = U1U2U3U1U2U3, oiuu such that u\, u3 e E*, u2 G E + and 

U1U2U3U1U2U3 E Dup(C") for any i € N. Notice that for any i s N , u\u\uzUiU2Ui is 

not primitive because it is in Dup(C"). Consider the case i > 3. By Lemma 8.28, 

u2~
l(U2U3U1)2 is not primitive. Then Lemma 8.29 implies that U2 and U2U3U1 share 

a primitive root, say p G E + . We may now write U2 = pn and u2u^Ui = pm for some 

n,m > 1. Hence u\~l(u2u3ui)2 — p"(8-1)+2m. From Lemma 8.28, it follows that 
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U1U2U3U1U2U3 = qn(»-1)+2m
) where q is a conjugate word of p. Now we have that 

uiu2u3UiU2U3 = qn(l-1)+2m is a proper prefix (and suffix) oiuiU2
+lu3uiU2U3 = qm+2m

1 

which contradicts with the definition of Dup(C'). Thus C" must be finite. • 

Lemma 8.31. Let C C E*. Then ( E * ) ^ = E*Dup(C)E*. 

Proof. Let w E ( E * ) ^ c ) . Then there exist x,y,z E E* such that y E C and 

w = xyyz. Thus, w E E*Dup(C)E*. Conversely, let v E E*Dup(C)E*. Then v is of 

the form xyyz such that x,z E E* and yy € Dup(C) (i.e., y E C). The duplication 

of y in xyz E E* results in xyyz = v, and hence v E ( E * ) ^ c ' . • 

The following corollary derives from Lemma 8.31 and Proposition 8.30. In fact, 

this corollary asserts the claim in the case when L = E*. 

Corollary 8.32. Let C C E*. Then ( E * ) ^ ^ is regular if and only if there exists a 

finite subset C'QC such that ( E * ) ^ ' ) = (E*)^ c ) . 

The last case we consider is that of marked duplication, where given a word w 

in L^(c\ we can deduce or at least guess the factor whose duplication generates w 

from a word in L, according to some mark of a control set C. Here we consider a 

mark which shows the beginning and end of a word in C, that is, C C # ( E \ {#})*# 

for some character # . For a strongly-marked duplication, where # ^ E and L C 

E*#E*#E*, we can easily show that the existence of a finite control set provided 

l^{c) j s r e g U i a r ) u s ing the pumping lemma for the regular language. Hence we 
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consider the case when the mark itself is a character in £, say # = a for some 

a e E . 

It turned out that we could employ the proof of the claim in the case of the 

marked duplication for the more general case when C is a nonoverlapping and an 

infix code. A language L is called non-overlapping if vx, yv £ L implies x — y = A, 

and L is called infix-code if L n (E*LS+ U £+L£*) = 0. That is, any elements of the 

language which is non-overlapping and an infix-code do not overlap each other. In 

the following, we prove the claim for this case. 

We introduce several notions and notations used in the proof. For a word w € 

L?^c\ we call a tuple (x, y, z) a dup-factorization of w with respect to L and C if 

w = xyyz, xyz € L, and y e C. When L and C are clear from the context, we 

simply say that (x, y, z) is a dup-factorization of w. Let S(w) be the number of 

dup-factorizations of w with respect to L and C. For y e C, if there are x, z G S* 

such that (x, y, 2) is a dup-factorization of w;, then we call y a dup-factor of to. Let 

Frf(iy) be the set of all dup-factors of w. Note that \Fd(w)\ < 5(w) but the inequality 

may be strict. 

Proposition 8.33. Let L be a regular language and C be a control set which is non-

overlapping and an infix-code. Then the regularity of lP^ implies the existence of 

a finite control set C such that L?^ = Z/^6"5. 

Proof. Let ~L and =<? be the syntactic congruences of L and L?(c\ respectively, 
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and we define = = =L n =<?. Since both L and L?^ are regular, Cj = is finite. 

Let T2 = {[c] € C / = s.t. |[c]| < 2}. Using induction on the number of dup-

factorizations, we prove that (i) T2 ^ 0, and (ii) any word in L^c^ has a dup-factor 

which is in an equivalence class in T2-

Firstly, we consider a word w in L?^ which has the smallest number of dup-

factorizations among the elements of L^c\ Suppose that no dup-factor of w is in 

equivalence classes in r 2 . Let (x, y, z) be a dup-factorization of w. Then there exists 

j / ' e C such that y' = y, y' ^ y, and y' & Suff(a;). Let w' = xy'yz. This is in L?(c\ 

and hence w' must have a dup-factorization, say (a, /5,7) for some a, /?, 7 G S*. Due 

to the non-overlapping and infix-code properties of C, j32 is an infix of either x or 

yz. Here we assume that it is in x, and let x = a02v, 7 = vy't/z for some i> € E*. 

Then 

w' = a/32~f G L 9 ( c ) => afivy'yz G L 

=>• a/3vyyz G L 

=> a/32vyyz = w; G L^ ( c ) . 

Thus, (a, /3, uyyz) is a dup-factorization of 10. Generally speaking, for a dup-

factorization (a,/?, 7) of w', iu has a corresponding dup-factorization (a',/5,7) if 

y' is an infix of a, or (a, /3,7') otherwise (i.e., y' is an infix of 7). Indeed, this means 

that 5(w') < 5(w) and F<i(w') C Fd(w). The first consequence is a contradiction 
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x y' vz 

aiPl 71 

a2 P2I2 

Figure 8.1: The comparison between two dup-factorizations, (ai,/3i,7i) and 
(0:2,^2,72), of w'. 

while the second one is of importance in the induction step. The second is clear from 

the above discussion. In order to show the first, it is enough to prove that there do 

not exist two distinct dup-factorizations of w' which correspond to the same dup-

factorization of w, and there exists no dup-factorization of w' which corresponds to 

(x,y,z). 

Let (o!i,/3i,7i) and (0:2,/^ 72) be two distinct dup-factorizations of «/, and con­

sider dup-factorizations of w which correspond to them respectively (either (a[, /?,, ryl) 

or (a,, /5„ 7,') for each 1 = 1,2). Firstly we prove that (o;i, /?i, j[) ^ (a2, fa,72)- Sup­

pose not, then since w' — a 1^71 = o ^ / ? ^ , w e have 7i = I2, a contradiction. Next 

we compare (ai,/3i,7i) and (a2,/32,72) (see Fig. 8.1). Their construction shown 

above implies that 71 and OJ2 must contain y' as their infix. Hence \a.iPl\ + \y'\ < |o;21. 

Since a'2 is generated by replacing y' in a2 with y and f3 ^ A, we have |a i | < |ct21 -

Thus, (ai,/3]_,j[) 7̂  (a2,/32,72). Using the same way, we can easily check that 

(oj, 0t, 7,), (a„ A, 70 7̂  (a, y, «)• 
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Now we assume that for all words in L?^ which have at most n dup-factorizations 

have a dup-factor which is in the equivalence class in T?. Suppose that there were 

v E L^ c ) with n + 1 dup-factorizations and without any dup-factor which is in 

the equivalence class of size at most 2. Then we can construct a word v' as above 

which satisfies S(v') < n and Fd(v') C Fd(v), which contradict with the induction 

assumption. • 

Corollary 8.34. Let L be a regular language and C be a control set. If there 

exists a finite set C\ C C such that C\C\ is non-overlapping and an infix-code, 

then the regularity of L^^ implies the existence of a finite control set C such that 

IP(C) _ £/?(C). 

Proof. Note that L?(c) = l^fd) u £<?(c\Ci)_ Proposition 8.33 implies the existence 

of a finite control set C2 such that L^c\Cl> = L^C'K Then by letting C" = Cx UC2, 

which is finite, we have iP^ = L^c">. • 

Indeed, we can prove that I \ = {[c] G C/ = s.t. |[c]| = 1} is enough to generate 

L^c\ that is, for a finite control set C = {c\ [c] e I \ } , L^c> = L^c'\ 

Proposition 8.35. Let L be a regular language and C C S* be a nonoverlapping 

and an infix code. IfL?^ is regular, then L^^ — L^^c'\ where C = {c | [c] € I \ } . 

Proof. All we have to prove is that for w G L^c\ unless w has a dup-factor which 

is in C", there exists w' e L^W such that 5(w') < 5(w) and Fd(w') C Fd(w). 
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Let (x, y, z) be a dup-factorization of w, and let y' € C such that y / y' but 

y = y'. Then let w0 = xy'yz, which is in L?(c\ The proof of Proposition 8.33 implies 

that if either (1) y' ^ Suff(x) or (2) x = x\y' for some xi € S* but (x\,y',yz) is 

not a dup-factorization of w0, then <5(wo) < S(w). Even otherwise (iu0 = x^y'y'yz), 

8{w0) < 8(w). If this holds with equality, consider w-i = xiyy'yz £ LP^C\ If either 

(1) y &" Suff(xi) or (2) x\ — x2y for some x2 € E* but (x2,y,y'yz) is not a dup-

factorization of iui, then 5(wi) < S(wo) = 8(w). Otherwise, let w2 = X2y'yy'yz. 

Note that x^ is getting strictly shorter. Hence repeating this process, we eventually 

reach an integer i > 0 such that either (1) or (2) holds for wt. We can check 

that 5(wl) < 5(wt-i) < • • • < S(w0) < 5(w) and Fd{wl) C Fd{w) as follows: Let 

wx = xl{y'y)l/2+lz G L?(c} (for even i; the odd case is essentially same and hence 

omitted). Let wt = a/327, where (a,/3,7) is a dup-factorization of wt. Since either 

(1) or (2) holds, /52 is an infix of x, or that of yz. Assume the former and let 

x% = a/327' and 7 = j'(y'y)l/2+1z. Then a/3jl(y'yY^2+1z € L. Using y = y', we can 

say that a/3j'(yy'Y/2yyz e L, and hence a/32j'(yy'Y/2yyz € L^c\ The lefthand 

side is xt(yy')z/2yyz = xl-Xy'{yy'Yl2~lyyz = • • • = xyyz = to. D 

Consequently, we can say that if we let m = |C/ = |, then the size of finite control 

set C is at most m — 1 because at least one equivalence class in C/ = must have 

infinite cardinality. 
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8.7 Duplication and Primitivity 

Recall that a word w £ E* is primitive if there exists no u £ E* such that w — uk 

for some k > 2. We denote by Q the set of all primitive words over the alphabet E. 

There is evidently a connection between duplication, repeat-deletion, and primitive 

words, but the nature of this relationship is unclear. The following section elucidates 

some of the properties of this relationship. 

Proposition 8.36 (see, for instance, [18]). Let u, v £ E+ such that uv is primitive. 

Then both u(uv)n and v(uv)n are primitive for any n > 2. 

Proposition 8.37. Let w £ E* be a non-primitive word. If we duplicate an infix of 

w which is strictly shorter than the primitive root of w, then the resulting word is 

primitive. 

Proof. Let w = / " for / £ Q and n > 2. We also denote w = xyz for x,y,z £ E*, 

where y is the infix we duplicate so that the resulting word is xyyz. Since w = 

/ " = xyz, there exist fs £ Suff(/) and f'p £ Pref(/) satisfying y = fsf'p. Then 

yzx, a conjugate of xyz, is written as yzx = {fsfp)
n, where fp £ Pref(/) satisfying 

/ — fpfs- Let g = fsfp. Clearly g £ Q. Now we prove that yyzx is primitive, and 

hence xyyz is also primitive. 

We have yyzx = fsf'pyzx = fsf'p9
n- Since \y\ < \f\, there exists a word v £ E+ 

such that fp = fyv. Then yyzx = y(yv)n and Proposition 8.36 implies that yyzx is 

primitive. • 



www.manaraa.com

305 

Proposition 8.38. Let x,y,z E £*. If xyz is primitive and xyyz is not primitive, 

then xz is primitive. 

Proof. Let / be the primitive root of y, i.e., y — fm for some m > 1. Since xyyz £ Q, 

its conjugate zxyy is also not primitive. Suppose zx were not primitive, i.e., zx — gn 

for some n > 2 and g E Q. If g ^ / , then zxyy = gnf2m. Lemma 8.29 implies that 

zxyy € Q, a contradiction. If g = f, then y — gm and hence zxy = ^n + m ^ Q. 

Thus, xyz 0 Q, a contradiction. As a result, 23; e Q, that is, xz E Q. • 

8.8 Discussion 

In this paper, we studied duplication and repeat-deletion, two formal language the­

oretic models of insertion and deletion errors occurring during DNA replication. 

Specifically, we obtained the closure properties of the families of languages in the 

Chomsky hierarchy under these operations, the language equations of the form 

X® = L and X* = L for a given language L, and the operation of controlled 

duplication. In addition, we made steps towards finding a necessary and sufficient 

condition for a controlled duplication of a regular language to be regular. 

Two problems for further investigation are: the problem of how to decide for a 

given language L whether the language equation X^ = L has a solution, and the 

problem of finding a necessary condition for the controlled duplication of a regular 

language to be regular, in the general case. 
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Chapter 9 

Schema for parallel insertion and 
deletion 

The contents of this chapter are taken from "Schema for parallel insertion and dele­

tion"1, which will be present at the 14th International Conference on Developments 

in Language Theory (DLT 2010). 

Summary: We propose a general framework for parallel insertion/deletion oper­

ations based on p-schemata. A p-schema is a set of tuples of words. When being 

used for parallel insertion of a language into a word, an element of a p-schema spec­

ifies how to split the given word into factors between which the insertion of the 

language will take place. Parallel deletion based on a p-schema is defined as an 

"inverse" operation of parallel insertion based on the p-schema. Several well-known 

language operations are particular cases of p-schema-based insertions or deletions: 

catenation, Kleene star, reverse catenation, sequential insertion, parallel insertion, 

XA version of this chapter has been published. 
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insertion next to a given letter, contextual insertion, right and left quotient, se­

quential deletion, parallel deletion. Additional operations that can be defined using 

p-schemata include contextual parallel insertion, as well as parallel insertion (dele­

tion) of exactly n words, at most n words, an arbitrary number of words. We also 

consider the decidability and undecidability of existence of solutions of language 

equations involving p-schema-based parallel insertion/deletion. 
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Schema for parallel insertion and deletion 

Lila Kari and Shinnosuke Seki 

Department of Computer Science, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. 

9.1 Introduction 

Since Adleman's success [1] in solving the Directed Hamiltonian Path Problem 

purely by biological means, which threw new light on fundamental research on op­

erations in formal language theory, various bio-operations have been intensively in­

vestigated. Examples include hairpin inversion [11], circular insertion/deletion [18], 

excisions of loop, hairpin, and double-loop [12], and contextual insertion/deletion 

[16], to name a few. 

The fact that one can experimentally implement in the laboratory some variants 

of insertions and deletions into/from DNA sequences [7], and use these as the sole 

primitives for DNA computation, gives practical significance to the research on 

insertion and deletion. Contextual insertion and deletion are also of theoretical 

interest because they have been proved to be Turing-universal [16]. In this paper, 

we will parallelize contextual insertion and deletion. For words x and y, the (x, y)-

contextual insertion of a language L into a word w [16] results in the language 

( J WixLyw2. 
t»i,«)2 w i t h w=w\xyw2 
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In other words, one considers all the possibilities of cutting w into two segments, such 

that the first segment ends with x and the second segment begins with y, and for each 

such possibility L is inserted between these segments. This operation suggests that 

for any positive integer n, an n-tuple (wi, w2, • • •, wn) of words may be used to control 

the parallel insertion of n — 1 instances of L into w = Wiw2 • • • wn to generate the 

language w\Lw2L- • • Lwn-\Lwn. A set of such tuples is called a parallel operation 

schema or p-schema for short, and we call the parallel insertion thus determined 

parallel insertion based on the p-schema. A p-schema can be used to control not only 

parallel insertion but parallel deletion as well. Parallel deletion of L from a word w 

based on a given n-tuple (ui,u2,..., un) deletes n—1 non-overlapping elements of L 

from w so as to leave this n-tuple, and concatenates them to generate the word u — 

u\u2 • • • un. As we shall see in Section 9.3, various well-known sequential as well as 

parallel operations (catenation, Kleene star, reverse catenation, sequential insertion, 

parallel insertion, insertion next to a given letter, contextual insertion, right and 

left quotient, sequential deletion, parallel deletion) are special instances of parallel 

operations based on p-schemata. Additional operations that can be denned using 

p-schemata are contextual parallel insertion, as well as parallel insertion (deletion) 

of exactly n words, at most n words, an arbitrary number of words. 

Besides being proper generalizations of existing language operations, parallel 

operations based on p-schemata lead to some interesting results when studied in 

the context of language equations. Equations of the form X\ o X2 = X3 have been 
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intensely studied in the literature, where o is a binary operation on languages, and 

some of Xi,X2,X3 are fixed languages, while the others are unknowns (see, e.g., 

[2, 4, 5, 6, 8, 10, 14, 15, 16]). In this paper, we focus on such language equations 

with o being p-schema-based insertion or deletion. Since these two operations are 

parameterized by p-schemata, we can also consider the problem of deciding whether 

L\ ox L2 = L3 has a solution, i.e., whether there exists a p-schema F such that 

parallelly inserting L2 into (deleting from) L\ based on F results in L3. 

In general, procedures do not exist for solving such equations when they involve 

a context-free language. Therefore, we focus on solving equations of the form (1) 

X <-^F R2 = i?3, (2) .Ri «—<x R2 — i?3, (3) Ri <-^F X = R3, and their p-schema-

based deletion variants, where all of i?i, R2, R3, F are regular2. Among these equa­

tions, the equations of the first or second form can be solved using the technique of 

[15]. The application of this technique presumes the property that the union of all 

the solutions to the given equation is the unique maximal solution. As we shall see, 

the third-type equations do not have this property, that is, they may have multiple 

maximal solutions. Algorithms to solve these equations are one of the main contri­

butions of this paper. Our algorithms work not only as a procedure to decide the 

existence of solutions, but as a procedure to enumerate all maximal solutions (The­

orems 9.14 and 9.17). Moreover, combining these algorithms with the algorithms 

2 by catenating words in a tuple of words via a special symbol # , we can naturally associate a 
set of tuples of words with a language, and as such we can establish a Chomsky-hierarchy for the 
sets of tuples of words. 
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to solve the equations of the first or second form (outlined in Section 9.5) enables 

us to solve two-variables equations of the form X <-^F Y — R3 (Theorem 9.20), 

Rx ^ x Y = R3 (Theorem 9.21), and Ry >-+x Y = R3 (Theorem 9.22). The pro­

posed algorithms can be modified to also solve inequality (set inclusion) variants of 

the above-mentioned equations with maximality condition on variables. 

9.2 Preliminaries 

By £ we denote a finite alphabet, and the set of words over £ is denoted by £* 

which includes the empty word A. For a given word w, its length is denoted by |iu|, 

and its reversal is denoted by wR. For an integer n > 0, £™, £-", and £ - n denote 

the sets of all words of length exactly n, at most n, and at least n, respectively. A 

word u is called a factor [prefix, suffix) of a word w if w — xuy (resp. w = uy, 

w — xu) for some words x, y. Let us denote the set of all prefixes (suffixes) of w by 

Pref(tu) (resp. Suff(tu)). For a language L C E*, Lc = E* \ L. 

Regular languages are specified by (non-deterministic) finite automata (NFA) 

A — (Q, E, 5, s, F), where Q is a finite set of states, s € Q is the start state, F C Q 

is a set of final states, and 5 is a map from Q x E to 2Q. For notational convenience, 

we employ the notation NFA also to denote a language accepted by an NFA (we use 

this slight abuse of notation for other kinds of acceptors). The family of languages 

accepted by NFAs is denoted by REG. An NFA is said to be deterministic if 5 is 
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a function. The deterministic property of a machine is stated explicitly by using 

the capital letter D. A language is said to be effectively regular if there exists an 

algorithm to construct an NFA which accepts this language. 

A characterization of languages can be given in terms of syntactic semigroups. 

For a language L C E ' , there exists a maximal congruence =i which saturates L 

(i.e., L is a union of equivalence classes). This is called the syntactic congruence of 

L, which is formally defined as follows: for u,v EY,*, 

u = L v <*=>- for any x, y E E*, xuy E L if and only if xvy E L. 

For a word w E E*, a set [w]=L = {u E E* | w =L U} is called an equivalence class 

with w as its representative. The number of equivalence classes is called the index 

o f = L . 

Theorem 9.1 ([19]). Let L C E* be a language. The index of =L is finite if and 

only if L is regular. 

For technical reasons, we define a function called saturator with respect to a 

language L\. Let aLl be a function from a word w into the equivalence class [w\=L . 

The saturator w.r.t. L\ is its extension defined as 0"LI(£) = UweitH^L • 

We can choose an arbitrary word in [w\=L as a representative of this class. By 

taking a representative from every class, we can construct a subset of E* called a 

complete system of representatives of E*/ =L- In particular, for a regular language 
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R, there exists a complete system of representatives which is computable. Let 

A = (Q, E, 5, s, F) be the (unique) minimal-DFA for R. Then u =R v if and only if 

5(q, u) = 8{q, v) for any q e Q. Hence, the index of =L is at most |Q|'Q'-

Theorem 9.2. Let R be a regular language and A = (Q, E, 8, s, F) be the min-DFA 

for R. Each equivalence class in E*/ =R is regular, and contains a word of length 

at most |Q|l<?i. 

Corollary 9.3. For a regular language R, there exists a computable complete system 

of representatives o/E*/ =L-

9.3 Parallel insertion and deletion schema 

Imagine that we will insert a language L into a word u in parallel. Let rL"=i ^* 

be the Cartesian product of E* with itself n times; that is to say, the set of all n-

tuples of words. Let $ = \Jn>l E* x E* x • • • x E*. A subset F of $ can be used to 

n times 
control the parallel insertion of a language L in a sense that if (tti, u2, • • •, un) £ F, 

then the word u = u\u2 •• -un is split in the manner dictated by the n-tuple in F, 

and L is inserted between ut and u l+i for all 1 < i < n to generate the language 

UyLu-iL • • • un-iLun. The set can be also used to control a parallel deletion. For this 

intended end-usage, we call a subset of § a parallel schema, or shortly p-schema, 

over E. 

As abstracted above, a p-schema F enables us to define the (parallel) insertion 
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<—<i? as: for a word u e T,* and a language LCE*, 

u <-^p L = M U1LU2L • • • un-\Lun. 
n>l,u=ui---un,(ui,...,u„)€F 

Note that an n-tuple in F parallel-inserts n — 1 words from L into u. Similarly, we 

define the (parallel) deletion ^->G based on a p-schema G as: for a word w € S* and 

a language L C S*, 

w y-+G L - {u1---un\n>l,x1,...,xn-ieL, 

(ui,...,un) eG,w = UiXiu2x2 • • • un-ixn^iun}, 

These operations are extended to languages in a conventional manner: for a language 

Lu Li <-<F L = \JueL u <-<F L and Lx ^G L = (JweL w ^G L. 

Many of the well-known operations are particular cases of p-schema-based oper­

ations. We list instances of p-schema-based insertion: 

catenation Fcat = S* x A, 

reverse catenation Frcat = A x £*, 

(sequential) insertion Fs;ns = S* x S*, 

parallel insertion Fpins = Un>o(^ x 11"= 1 S x A). 

Deletions based on Fcat, Frcat, FSins, and FPjns correspond to right and left quotient, 
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(sequential) deletion, and parallel deletion, respectively. 

Parallel insertion (deletion) of exactly n words, at most n words, or arbitrary 

number of words are important instances of insertion (deletion) based on: 

ra+l n oo 

-''pins(n) = I I 2-i , "pms(<n) — \^) -^pins(j)) "* \^_J •*'pins(j)i 

1=1 8=0 1=0 

respectively. Using for instance F*, one can implement Kleene-star, the most well-

studied unary operation in formal language theory, as L* = A *-<F, L. 

The p-schemata introduced so far are "syntactic" in a sense, while many of 

semantic (letter-sensitive) operations are known. For a letter b € E, parallel in­

sertion next to b [14] is the insertion based on Fpjnsb = {(ui,U2, • • • ,un) \ n > 

1, u i , . . . , un e (E \ {b})*b}. For a context C C S ' x £*, C-contextual (sequential) 

insertion [16] is the insertion based on Fsc\ns(C) = |J, NeC£*:c x V^*- This °Per~ 

ation is naturally parallelized as C-contextual parallel insertion with the p-schema 

^pcins(C) - {(in,. . . , un) I n > 1, VI < i < n, (SuffK) x Pref(u,+i)) n C # 0}. 

It may be worth noting that the descriptional powers of our framework and of 

/-shuffle proposed by Domaratzki, Rozenberg, and Salomaa [9] (a generalization 

of semantic shuffle proposed by Domaratzki [8]) are incomparable. Indeed, only 

/-shuffle can specify contexts not only on the left operand but also on the right 

operand, while p-schema-based operations can insert/delete multiple copies of right 

operand. Thus, insertion/deletion based on a p-schema which contains 2-tuples 
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and/or 1-tuples is a special instance of /-shuffle. 

9.4 Hierarchy of p-schemata and closure proper­

ties 

In this section, we investigate closure properties of abstract families of acceptors 

augmented with reversal-bounded counters under the p-schema-based operations. 

Such an acceptor was proposed by Ibarra [13] as the counter machine. For k > 0, 

let NCM (A;) be the class of NFAs augmented with k reversal-bounded counters, 

and NCM be the union of such classes over all fc's. By augmenting an NCM with 

an unrestricted pushdown stack, we obtain a non-deterministic pushdown counter 

machine (NPCM). For k > 0, let NPCM(fc) be an NPCM with k reversal-bounded 

counters. DCM(fc), DPCM(fc), DCM, and DPCM are the deterministic analogs 

of NCM(fc), NPCM(A;), NCM, and NPCM. A desirable property specific to these 

deterministic classes is proved by Ibarra [13] as follows: 

Theorem 9.4. For Lx e DCM and L2 E DPCM, it is decidable whether Lx = L2. 

It is natural to encode a tuple (u\, u 2 , . . . , un) as a word Ui#u2# • • • #un using 

a special symbol # . Denoting this (one-to-one) encoding by ip, we can encode a 

p-schema F as tp(F) — {ip(f) \ f € F}. Furthermore, we say that a p-schema F is 

in a language class C if ip(F) € C. For instance, F is regular if ip(F) is a regular 
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language over £ U {#}. 

First of all, we prove that REG is closed under insertion/deletion based on a 

regular p-schema as Corollary 9.6. Actually, the following stronger result holds, 

though the rest of this paper does not require more than Corollary 9.6. 

Proposition 9.5. Let Li E NCM(fci), L2 E REG, and F be ap-schemainNCM(k^). 

Then both L\ <-^F L2 and L\ y->p L2 are in NCM(fci + k^). 

Proof. We show only a construction of an NCM M for L\ <-^F L2, and omit the 

construction of an NCM for L\ -^p L2. 

Let M2 be a finite automaton for L2, and MX,M^ be respective NCMs with 

ki,k^ counters for Li,il>{F). The NCM M expects its input to be of the form 

U\X\U2x2 • • -xn-ixn for some integer n > 1, u\u2 • • -un E Ll5 x\,x2,... , xn-i E L2, 

and Ui#u2#- • -#un E ip(F). M simulates Mi and M$ simultaneously. Guess­

ing non-deterministically that the prefix uixi---x%-iu% has been read, M pauses 

the simulation of both Mi and M^ and instead activates the simulation of M2 

on x, after having M^ make a #-transition. When M2 is in one of its accepting 

states, M non-deterministically resumes the simulation of Mi and M^ on the suffix 

u l+1x,+i • • -Xn-iUn of the input. The simulation of M2 is initialized every time it is 

invoked. • 

Corollary 9.6. For regular languages R\, R2 and a regular p-schema F, both R\ <-^F 

R2 and R\ >-^p R2 are effectively regular. 
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We can prove an analogous result of Proposition 9.5 for NPCM. By enlarging 

some of the respective language classes which L\ and F belong to up to NPCM 

and a class which L2 belongs to up to CFL, we can ask whether or not L\ <-<F L2 

or L\ >—>F L2 are in NPCM. In the following we only address some non-closure 

properties of DPCM with implications to language equation solvability in the next 

section. 

Let us define the balanced language Lb over S = {a, $} as follows: 

Lb = {otl$a*2$---$a,fc$a**+1$---$a,» | n> 2, iu...,in > 0 and 

31 < k < n such that i\ + i2 H + ik = h+i + • • • + in}-

In other words, a word in Lf, has a central marker $ so that the number of a's to the 

left of this marker is equal to the number of a's to its right. For L\ — {an$an \ n > 1}, 

we obtain L\ <—<F. $ = Lj,. Recall the definition of F*; in this case it scatters an 

arbitrary number of $'s into any word in L\. We can generate Lb also by deletion. 

Let Li = U n >o( a n ^ $ *) $ #( a "^ $ *) a n d F = ( ° . $>* x {°. $ } * ' w h e r e ^J denotes shuffle 

operation. Then Lb = Lx ^F # . These Li's are DCM(l). Lb is clearly in NCM(l) 

because the non-determinism makes it possible for the reversal-bounded counter to 

guess when it should transit into its decrementing mode. In contrast, Lb is proved 

not to be DPCM (see, e.g., [3]). Consequently we have the following non-closure 

property. 
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Proposition 9.7. There exist L\ € DCM(l), a regular p-schema F, and a singleton 

language L2 such that L\ <—<p L2 0 DPCM. 

Proposition 9.8. There exist L\ E DCM(l), a regular p-schema F, and a singleton 

language L2 such that L\ ~>-^>F L2 £ DPCM. 

By swapping the roles of L\ and F in the above example, we can also obtain the 

following non-closure property. 

Proposition 9.9. There exist a regular language Ri, a singleton language L2, and 

a DCM(l) p-schema F such that Ri >->F L2 £ DPCM. 

9.5 Language equations with p-schemata-based op­

erations 

In this section, we consider language equations involving p-schema-based operations. 

The simplest equations to be studied are one-variable equations of the form X <-^F 

L2 = L3, L\ <-^x L2 — Z/3, Li <-HF X — L3, and their deletion variants. Such 

equations with special instances of p-schema-based operations (catenation, insertion, 

etc.) as well as incomparable operations (shuffle, etc.) have been intensively studied 

for the last decades [4, 5, 8, 10, 14, 15, 17]. These papers mainly dealt with language 

equations with the property that the union of all their solutions (if any) is also 

their solution (maximum solution). For instance, if XL = R and YL — R, then 
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(X U Y)L = R. For such equations, we can employ a technique established in 

[15]; assuming a given equation has a solution, firstly construct the candidate of its 

maximum solution, and then substitute it into the equation to check whether it is 

actually a solution. Since X <—<F L2 = L3, L\ <-<x L2 = L3, and their deletion 

variants have this property, this technique can solve these equations. We will now 

see how to construct the candidate for each. 

In [5], Cui, Kari, and Seki defined the left-1-inverse relation between operations 

as: the operation • is left-l-inverse of the operation o if for any words u, w € E* and 

any language LCTi*,wEuoL <==$• u E w • L. This is a symmetric relation. 

By definition, insertion and deletion based on the same p-schema are left-l-inverse 

to each other. There they proved that for operations o, • which are left-l-inverse to 

each other, if X o L2 — L3 has a solution, then {L\ • L2)
c is its maximum solution. 

Theorem 9.10. For regular languages R2,R3 and a regular p-schema F, the exis­

tence of a solution to both X <—~F R2 = R^ and X ^>p R2 — R^ is decidable. 

Proof. Both (i?3 >—>F R2)
c <-*F R2 and (R% *—<-F R2Y >-^F RI are regular according 

to Corollary 9.6 and the fact that REG is closed under complement. Now it suffices 

to employ Theorem 9.4 for testing the equality. • 

For Li <—(* L2 — L3, the candidate is Fmax = {/ e $ \ Lx *-<y L2 C L3}. 

For Li ^>x L2 — L3, Fmax should be rather {/ € # I Z>i >—>/ L2 C L3}. When 

L\,L2, L3 are all regular, we can construct an NFA for ^>(#\ Fmax), which is equal 
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to (E U #)* \ ip{Fma_x). A similar problem was studied in [10], and our construction 

originates from theirs. As such, the proof of next result is omitted. 

Theorem 9.11. For regular languages Ri,R2,R3, the existence of a solution to both 

Ri <-^x R2 = -R3 and R\ >-*x R2 — R3 is decidable. 

9.5 .1 S o l v i n g L\ < - ^ X = L3 

In contrast, the equations Ly <^F X = L3 and L\ >—>? X = L3 may not have 

a maximum solution. For example, let L\ — L3 = {a2n \ n > 1}, and F = 

P̂ins(2) U Fpins(0). Both Leven = {a2m \ m > 0} and Lodd = {a2m+1 | m > 0} are 

(maximal) solutions to L\ <-^F X — L3. On the other hand, Li <-^F (LevenUL0dd) can 

generate a3, which is not in L3. For deletion, let F = {(A, aba), (A, A, A), (aba, A)}, 

and L\ — {ababa}. Then L\ y->F {ab} = Li >—>̂  {ba} = {aba}, but Li >-*F 

{a6, ba] — {aba, a}. These examplify that we cannot apply the previously-mentioned 

approach to solving language equations with the second operand being unknown. 

We propose an alternative approach based on an idea from Conway (Chapter 6 

of [4]) to solve / (E U {XX,X2,...}) C R, where / is a regular function over E and 

variables Xi,X2,..., and R is a regular language. The idea shall be briefly explained 

in terms of p-schema-based operations in order to step into more general cases than 

the case when all the involved languages are regular. 

Lemma 9.12. Let L, Li be languages. Then (Li <—<.F (L2 U w)) C\L ^ 0 if and only 
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if (Li <—<F (L2 U [iu]=L)) fl L ^ 0 for any word w and language L2. 

By replacing L in this lemma with L\, we can see that if L\ <—<-F (L2 U w ) C L3, 

then Li <—<F (L2 U [w]=L ) C L3. Thus, it makes sense to introduce the notion of 

a syntactic solution. For a language L, we say that a solution to a one-variable 

language equation is syntactic with respect to L if it is a union of equivalence classes 

in £*/ =L. 

Proposit ion 9.13. For languages Li,L$, the equation L\ <—< X = L3 has a solution 

if and only if it has a syntactic solution with respect to L3. 

Thus, in order to determine whether L\ <-^F X — L3 has a solution, it suffices to 

test whether it has a syntactic solution. On condition that this test can be executed, 

this problem becomes decidable. If L3 is regular, then the number of candidates of 

syntactic solution is finite (Theorem 9.1), and they are regular (Theorem 9.2). Let 

fi = {&Rz{L) I L C S*}, the set of all candidates of syntactic solution. A pseudocode 

to solve L\ <-^F X — i?3 is given below: 

Algorithm to solve L\ <-^F X — R3 

1. Order the elements of 6 in some way (let us denote the z-th element of ft 

by fl[i]). 

2. for each 1 < i < |fi|, test whether L\ <-^F fi[i] is equal to Z?3. 
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With the further condition that L\ and F are chosen so that any language obtained 

by substituting a candidate into L\ <—<-p X is comparable with R3 for equality, this 

algorithm becomes executable. One such condition of significance is that both L\ 

and F are regular. In this case, the algorithm, Theorem 9.4, and Corollary 9.6 lead 

us to the next theorem, which is stronger than decidability. It should be noted that 

maximal solutions are syntactic. 

Theorem 9.14. For regular languages R\, R3 and a regular p-schema F, the set of 

all syntactic solutions to R\ <-^p X = R3 is computable. 

The regularity of R3 is necessary for the algorithm to work, whereas such condi­

tion is not imposed on L\. If a condition on L\, F under which L\ <-^F fi[i] € DPCM 

for any 1 < i < |6| were found, we could solve Lx <-^F X — R3 under it using The­

orem 9.4. This is an unsettled question, but as suggested in Proposition 9.7, weak­

ening the condition on Lx slightly can make L\ <-^F X non-DPCM. It is probably 

more promising to broaden the class of F. 

9.5.2 Solving Lx ^F X = L3 

Let us continue the investigation on the existence of right operand by changing the 

operation to p-schema-based deletion. 

Lemma 9.15. Let Lx be a language. Then Lx >-+p ({tw}uL2) = Lx >—>? ([w]=L UL2) 

for any word w, language L2, and a p-schema F. 
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Proof. Let u e L\ >^F {[w]=L UL2); that is, there exist v e Li, n > 0, (iii, u2,. • •, un+i) £ 

F , and x i , . . . , arn 6 [u/|=t UL2 such that u = U\U2 • • • un+\ and v — u\X\U2x2 • • • unxnun+i. 

Now on v if x% G [w]=L , then we replace x% with u>, and this process converts v into 

a word v'. Note that this replacement process guarantees that v' € L\ because the 

replaced factors are equal to w with respect to the syntactic congruence of L\. More­

over, u € v' ^F {{w} U L2). Thus, Lx y->F ({w} U L2) => Li ^-+F ( M = t l
 u ^ ) - • 

This lemma provides us with two approaches to determine whether a given equa­

tion with p-schema-based deletion has a solution. The first approach is based on 

syntactic solutions. Given a language L2, Lemma 9.15 implies that L\ »->F L2 — 

L\ >-^F CLiC^)- Therefore, as in the case of insertion, the existence of a solution to 

L\ >—>F X = L3 is reduced to that of its syntactic solutions, but with respect to L\ 

(not L3). Moreover, maximal solutions are syntactic. 

Proposit ion 9.16. For languages Li,L3 and a p-schema F, the equation L\ ^->p 

X = L3 has a solution if and only if it has a syntactic solution with respect to L\. 

Furthermore, its maximal solution (if any) is syntactic. 

With a straightforward modification, the algorithm presented in Sect. 9.5.1 can 

be used to output all syntactic solutions to i?i H->F X = L3 with F being a regular 

p-schema. Thus, we have the following result, analogous to Theorem 9.14. 

Theorem 9.17. For a regular language R\, L3 € DPCM, and a regular p-schema 

F, the set of all syntactic solutions to R\ >—>̂  X = L3 is computable. 
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Note that even if L3 is DPCM, the equation above is solvable due to Corollary 9.6 

and Theorem 9.4. 

The existence of the second approach provided by Lemma 9.15 is due to the 

essential difference between Lemma 9.15 and its analog for insertion (Lemma 9.12). 

A word obtained by deleting some words in L2 from a word in L\ can be also 

obtained by deleting their representatives in a complete system of representatives 

with respect to L\ from the word in L2 based on the same schema; this is not true 

for insertion. Since its choice is arbitrary, we fix 9l(Li) to be the set of smallest 

words according to the lexicographical order in each equivalence class. We say that 

a solution to L\ >—>p X — L3 is representative if it is a subset of 0\(Li). 

Proposition 9.18. For languages Li,L^ and a p-schema F, the equation L\ >—>F 

X = L3 has a solution if and only if it has a representative solution. 

If Li is regular, then 9l(Li) is a finite computable set due to Theorem 9.1 and 

Corollary 9.3, and hence, our argument based on representative solution amounts 

to the second approach. 

Theorem 9.19. For a regular language R\, L^ € DPCM, and a regular p-schema 

F, the set of all representative solutions of R\ ^>F X = L3 is computable. 

With Theorem 9.1, Lemma 9.15 also leads us to a corollary about the number 

of distinct languages obtained by p-schema-based deletion from a regular language. 

Namely, given a regular language R± and a p-schema F, there exist at most a finite 
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number of languages which can be represented in the form R1 >—>F L2 for some 

language L2. This result is known for sequential deletion [14]. 

9.5.3 Solving two-variables language equations and inequal­

ities 

There is one thing which deserves explicit emphasis: the set of all candidates of 

syntactic solutions is solely determined by only one of L3, Li, and does not depend on 

the other or F at all. This property paves the way to solving two-variables language 

equations of the form X <—<F Y — L3, Li <-^x Y — L3, and Lx >-^x Y — L3. The 

first equation with F = Fcat (catenation) has been investigated under the name of 

decomposition of regular languages and proved to be decidable [17, 20]. 

Let us assume that (Li,L2) is a solution of X <-^F Y = L3. Then aL3(L2) 

is a solution of L\ <—<̂  Y — L3, and hence, (L^er^I^)) is also a solution of 

X <r-^F Y — Ls. This means that if the equation has a solution (pair of languages), 

then it also has a solution whose second element is a sum of equivalence classes in 

E*/ = L 3 . Therefore, solving X <-^F 6[z] = L3 for all 1 < i < |fi| using Theorem 9.10 

amounts to solving the two-variables equation. For a regular language Rz and a 

regular p-schema F, the above method works effectively to solve X <-^F Y = R3. 

Theorem 9.20. It is decidable whether the equation X <—<.F Y — R3 has a solution 

or not if both R3 and F are regular. 
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Undertaking the same "two-staged" strategy but using Theorem 9.11 instead, 

we can solve the equations of second and third forms. 

Theorem 9.21. For regular languages Ri,R3, it is decidable whether the equation 

Ri <~^x y = R3 has a solution or not. 

Theorem 9.22. For regular languages R\,R3, it is decidable whether the equation 

R\ >—>x y = R3 has a solution. 

Unlike p-schema-based insertion, this strategy does not work to solve the equa­

tion of the form X ^>F Y — L3. This is because in this case it is not L3 but L\ that 

determines the syntactic solutions of L\ ^->F Y = L3. 

The usage of the proposed algorithm is not exclusive to solving language equa­

tions. By replacing the equality test in Step 2 with the following inclusion test "for 

each 1 < i < |fi|, test whether Ly *—<F fi[i] is a subset of i?3", the proposed algorithm 

can answer the problem of finding maximal solutions to the language inequality 

Li <-^F X C R3, and with the two-staged strategy, this further enables us to solve 

X <-^F Y C R3 and Ly <-^x Y Q #3- Now it should be trivial how to approach 

R\ y->p X C L3 and Ri ^>x Y Q L3. 

9.5.4 Undecidability 

We conclude this section and this paper by complementing the decidability results 

obtained so far with some undecidability results for one-variable equations. Usually, 
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the existence of solutions to a language equation of this type is decidable if all known 

languages are regular, and undecidable if at least one of the known languages is 

context-free. The results of this section bring down, for several cases, the limit for 

undecidability of existence of solutions of such language equations from the class of 

context-free languages to NCM(l). The equation L\ *-<F X — L3 is solvable in the 

case of Li, F, L3 being regular, i.e., NCM(O). Actually, we shall prove that once one 

of them becomes NCM(l), then this problem immediately turns into undecidable. 

Proposit ion 9.23. For languages Li, L3 and a p-schema F, if one of L\, L3, F is 

in NCM(l) and the others are regular, it is undecidable whether L\ <-^p X = L3 has 

a solution or not. 

Proof. We employ the reduction of universe problem (whether a given NCM(l) is 

£*) into these problems. The universe problem is known to be undecidable for the 

class NCM(l) [13]. Because of space limitations, we can consider here only the case 

when F is an NCM(l) p-schema. 

Let \\, $ be special symbols not included in S. Based on a given L e NCM(l), we 

define a p-schema F — A x $L, which is in NCM(l), too. Then for regular languages 

$E* and ^$S*, we claim that $E* ^F X = \\%H* has a solution <̂ =4> L = £*. 

Indeed, the left-hand side of the above equation is X%L so that its only one possible 

solution is X = \\. Thus, the existence of the solution leads us immediately to that 

L is universe. • • 
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For the equation L\ >—>F X = L3, the similar undecidabihty result holds. 

Proposition 9.24. For languages Li, L3 and a p-schema F, if one of Li, L3, F is 

in NCM(l) and the others are regular, it is undecidable whether L\ >—»p X = L% has 

a solution or not. 
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Chapter 10 

Discussion 

The implications of taking into consideration particularities of biomolecular infor­

mation encoding and processing have been studied in this thesis. In particular, we 

presented the contributions obtained in the two research directions: 

1. extensions of the notions and results in combinatorics on words being inspired 

by biological information encoding; 

2. mathematical modeling of bio-operations. 

Primary contributions, in the first direction, are the extended notions of power 

and primitivity, namely, 0-power and 0-primitivity. These extended notions, in turn, 

enabled us to consider the Fine and Wilf's theorem and Lyndon-Schiitzenberger 

equation in more general settings. We proved the extended Fine and Wilf's theorem 

with a bound and its improvement, and showed the goodness of the latter. Fur-
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thermore, the optimality of the latter was analyzed. As for the extended Lyndon-

Schiitzenberger equation, we characterized its parameters over which the equation 

is solved positively and the ones over which it is solved negatively. Throughout 

the process to reach these goals, we proved various properties of ^-powers and 9-

primitive words. Among the most important are the characterizations of languages 

equations over ^-primitive word(s). As illustrated in the encoding set design prob­

lem, a DNA molecule and its WK-complement are often required to be handled in 

a unified manner. Our primary contributions and their proofs would enable us to 

directly approach to or at least give some hint to the problem of how to handle the 

complementary molecules uniformly. 

Along the second direction, we modeled three bio-operations: pseudoknot for­

mation and two phenomena, duplication and insertion/deletion. The topics we 

investigated on these operations include closure properties of language classes under 

these operations and language equations involving these operations (decidability of 

the existence of the solutions, and algorithms to solve the solvable equations). 

Let us conclude this thesis by enumerating questions which have been left open 

in this thesis and future directions. In Chapter 5, we completely characterized 

all pairs of integers p, q for which the improved bound b'(p,q) is optimal, but this 

characterization exemplified that the bound is NOT strongly optimal. Thus, the 

strongly optimal bound should be formulated mathematically. The extended Fine 

and Wilf's theorem can be generalized further, for examples, as follows: 
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Problem 10.1. Let 9 be an antimorphic involution 9 and k > 2. Find a function 

/ : Nfc —>• N such that for given ^-primitive words vy, v2, • •., vk, if 0-powers of 

Vi,V2,.-., un share a common prefix of length/(| Vi | , . . . , |ufe|), then pg(vi) = p$(v2) — 

••• = Po(vn). 

The extended Lyndon-Schiitzenberger equation has not been solved yet on pa­

rameters (3, n, m) for n, m > 3. 

Problem 10.2. For an antimorphic involution 9, ^-primitive words u,v,w, and 

integers n, m > 3, let v\,..., vn 6 {v, 6{v)} and W\,..., wm € {w, 9(w)}. Determine 

whether the equation 

U i U 2 U 3 = Vi---VnWi •••wm 

implies that u, v, w 6 {t, 9(t)}* for some t €E S + or not. 

The extended Lyndon-Schiitzenberger equation can also be generalized further as 

follows: Given an antimorphic involution 9, k > 2, ^-primitive words u,v^,v2,... ,vk, 

and positive integers n, ni, n 2 , . . . , nk > 1, we can consider the following equation: 

UlU2---Un = Ui,i • • • Vi<niV2ti • • • V2>n2 •••Vkti •••Vk,nh, (10-1) 

where u\,... ,un E {u, 9(u)} and t ^ , . . . , vl<ni 6 {i>i, 0(vi)} for 1 < 1 < k. 

Problem 10.3. Find a necessary and sufficient condition on n, ni, n2,..., nk such 

that for any antimorphic involution 9 and arbitrary ^-primitive words u,Vi,... ,vk, 
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Eq. (10.1) implies that u,vi,...,vk G {t,0(t)}* for some t e S + . 

One can state that our results in Chapters 3-6 center around the language equa­

tion or the system of language equations which forces some of the involved words to 

be in the set {£, 9(t)}* for some word t € E+ . We can say that such a word equation 

or a system of equations has a defect effect with respect to 9, and can call results 

about this effect defect theorems with respect to 9. Other word equations as well as 

equation systems on words deserve further investigation of whether they have defect 

effects with respect to 9. 

In Chapter 7, H-type pseudoknot formation was modeled by the notion of pseudoknot-

bordered words, which are of the form w = xya = 09(x)9(y). Although this model 

enabled us to investigate the words of the form xyy9(x)9(y), this is only a special 

case of H-type pseudoknots, which should be modeled as xayP9(x)j9(y) with a, 7 

not always being empty. Therefore, we need a more appropriate model for H-type 

pseudoknots formation. In addition, there exist non-H-type pseudoknots, though 

H-type ones are most typical among all the pseudoknots. It is an interesting topic 

to establish some general framework to formalize pseudoknots. 

Controlled duplication was considered in Chapter 8, and several interesting suf­

ficient conditions were found on the control set C under which L?^ is regular for 

any regular language L. Our claim that L^c^ is regular for any regular language 

L if and only if there exists a finite control set C such that L^^ — L?(c) was 

negatively solved by an example. Thus, the following problem remains open. 



www.manaraa.com

340 

Problem 10.4. Find a necessary and sufficient condition under which L?(c} is 

regular for any regular language L. 

One significant and challenging problem, which was left open in Chapter 9, is to 

solve the two-variables language equation with p-schema-based parallel deletion of 

the following form: 

X >—>p Y — L3 

for regular language L3, regular p-schema F, and two variables X, Y. To our knowl­

edge, even with the specific case when F = F c a t = S* x A, i.e., the case when y-*F is 

right quotient, it is not known whether the existence of the solution to this equation 

is decidable or not. 

As done for insertion/deletion in Chapter 9, one can extend duplication as a par­

allel operation called parallel duplication, which maps a word U1X1U2X2 • • • uk^ixk-iuk 

into U\x\uix\ • • • Uk-\x\_xUk. Without any modification, p-schema makes it possible 

for us to define this parallelized operation as: for a p-schema F and a language L, 

L^F — {uixj^xl • • • uk-ix\_xuk I UiXiU2x2 •••uk e L,(ui,U2,..., uk) E F}. 

We can further strengthen parallel duplication with control set. 

Unquestionably, the most essential concept throughout this thesis was the an-

timorphic involution 9 as a formal model of Watson-Crick complementarity. WK-
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complementarity refers to the bonds A-T and C-G, but in vivo other bonds such as 

G-T are thermodynamically-favored and hence found often. Once taking G-T into 

consideration, a proper model of bonds between nucleotides will be not a function 

but a relation. Any problems investigated in all the chapters but Chapters 8 and 9 

in this thesis can be generalized naturally by replacing the antimorphic involution 6 

with the relation. In particular, the equivalence between a word and its complement 

is generalized as the equivalence among words which are in the relation. 
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